Division of Molecular and Translational Radiation Oncology, Heidelberg University Medical School, Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany.
Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital (UKHD), Heidelberg, Germany.
Radiat Oncol. 2019 Jul 11;14(1):123. doi: 10.1186/s13014-019-1295-z.
Helium (He) ion beam therapy provides favorable biophysical characteristics compared to currently administered particle therapies, i.e., reduced lateral scattering and enhanced biological damage to deep-seated tumors like heavier ions, while simultaneously lessened particle fragmentation in distal healthy tissues as observed with lighter protons. Despite these biophysical advantages, raster-scanning He ion therapy remains poorly explored e.g., clinical translational is hampered by the lack of reliable and robust estimation of physical and radiobiological uncertainties. Therefore, prior to the upcoming He ion therapy program at the Heidelberg Ion-beam Therapy Center (HIT), we aimed to characterize the biophysical phenomena of He ion beams and various aspects of the associated models for clinical integration.
Characterization of biological effect for He ion beams was performed in both homogenous and patient-like treatment scenarios using innovative models for estimation of relative biological effectiveness (RBE) in silico and their experimental validation using clonogenic cell survival as the gold-standard surrogate. Towards translation of RBE models in patients, the first GPU-based treatment planning system (non-commercial) for raster-scanning He ion beams was devised in-house (FRoG).
Our data indicate clinically relevant uncertainty of ±5-10% across different model simulations, highlighting their distinct biological and computational methodologies. The in vitro surrogate for highly radio-resistant tissues presented large RBE variability and uncertainty within the clinical dose range.
Existing phenomenological and mechanistic/biophysical models were successfully integrated and validated in both Monte Carlo and GPU-accelerated analytical platforms against in vitro experiments, and tested using pristine peaks and clinical fields in highly radio-resistant tissues where models exhibit the greatest RBE uncertainty. Together, these efforts mark an important step towards clinical translation of raster-scanning He ion beam therapy to the clinic.
与目前所使用的粒子疗法相比,氦(He)离子束治疗具有更好的生物物理特性,例如减少侧向散射,增强对深层肿瘤(如重离子)的生物损伤,同时减轻在远端健康组织中观察到的较轻质子的粒子碎裂。尽管具有这些生物物理优势,但由于缺乏对物理和放射生物学不确定性的可靠和稳健估计,因此栅扫描氦离子治疗仍未得到充分探索。例如,临床转化受到缺乏可靠和稳健的物理和放射生物学不确定性的限制。因此,在海德堡离子束治疗中心(HIT)即将开展氦离子治疗计划之前,我们旨在描述氦离子束的生物物理现象,以及用于临床整合的各种相关模型的各个方面。
使用创新模型在同质和类似患者的治疗场景中对 He 离子束的生物效应进行了特征描述,这些模型用于在计算机中估计相对生物效应(RBE),并使用集落形成细胞存活作为金标准替代物进行了实验验证。为了将 RBE 模型转化为患者,我们内部设计了第一个用于栅扫描 He 离子束的基于 GPU 的治疗计划系统(非商业性)(FRoG)。
我们的数据表明,不同模型模拟之间存在临床相关的不确定性±5-10%,突出了它们独特的生物学和计算方法。在临床剂量范围内,针对高放射抗性组织的体外替代物呈现出较大的 RBE 可变性和不确定性。
现有的现象学和机制/生物物理模型已成功整合并在蒙特卡罗和 GPU 加速分析平台中针对体外实验进行了验证,并在高度放射抗性组织的原始峰和临床场中进行了测试,在这些组织中,模型表现出最大的 RBE 不确定性。这些努力共同标志着向临床转化栅扫描 He 离子束治疗的重要一步。