Research Laboratory of Electronics, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA.
Department of Materials Science and Engineering, MIT, Cambridge, MA 02139, USA.
Science. 2019 Jul 12;365(6449):145-150. doi: 10.1126/science.aaw2502.
Artificial muscles may accelerate the development of robotics, haptics, and prosthetics. Although advances in polymer-based actuators have delivered unprecedented strengths, producing these devices at scale with tunable dimensions remains a challenge. We applied a high-throughput iterative fiber-drawing technique to create strain-programmable artificial muscles with dimensions spanning three orders of magnitude. These fiber-based actuators are thermally and optically controllable, can lift more than 650 times their own weight, and withstand strains of >1000%. Integration of conductive nanowire meshes within these fiber-based muscles offers piezoresistive strain feedback and demonstrates long-term resilience across >10 deformation cycles. The scalable dimensions of these fiber-based actuators and their strength and responsiveness may extend their impact from engineering fields to biomedical applications.
人工肌肉可能会加速机器人技术、触觉和假肢的发展。尽管基于聚合物的致动器的进步已经提供了前所未有的强度,但以可调节的尺寸大规模生产这些设备仍然是一个挑战。我们应用了一种高通量的迭代纤维拉伸技术,制造出具有三个数量级尺寸的可程控应变人工肌肉。这些基于纤维的致动器具有热和光可控性,可以举起超过自身重量 650 倍的重量,并能承受超过 1000%的应变。在这些基于纤维的肌肉中集成导电纳米线网格提供了压阻应变反馈,并证明了超过 10 个变形循环的长期弹性。这些基于纤维的致动器的可扩展尺寸及其强度和响应能力可能会将它们的影响从工程领域扩展到生物医学应用。