Khatib Muhammad, Zhao Eric Tianjiao, Wei Shiyuan, Park Jaeho, Abramson Alex, Bishop Estelle Spear, Thomas Anne-Laure, Chen Chih-Hsin, Emengo Pamela, Xu Chengyi, Hamnett Ryan, Root Samuel E, Yuan Lei, Wurdack Matthias J, Zaluska Tomasz, Lee Yeongjun, Parkatzidis Kostas, Yu Weilai, Chakhtoura Dorine, Kim Kyun Kyu, Zhong Donglai, Nishio Yuya, Zhao Chuanzhen, Wu Can, Jiang Yuanwen, Zhang Anqi, Li Jinxing, Wang Weichen, Salimi-Jazi Fereshteh, Rafeeqi Talha A, Hemed Nofar Mintz, Tok Jeffrey B-H, Qian Xiang, Chen Xiaoke, Kaltschmidt Julia A, Dunn James C Y, Bao Zhenan
Department of Chemical Engineering, Stanford University, Stanford, CA, USA.
School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
Nature. 2025 Sep;645(8081):656-664. doi: 10.1038/s41586-025-09481-2. Epub 2025 Sep 17.
There is an increasing demand for multimodal sensing and stimulation bioelectronic fibres for both research and clinical applications. However, existing fibres suffer from high rigidity, low component layout precision, limited functionality and low density of active components. These limitations arise from the challenge of integrating many components into one-dimensional fibre devices, especially owing to the incompatibility of conventional microfabrication methods (for example, photolithography) with curved, thin and long fibre structures. As a result, limited applications have been demonstrated so far. Here we use 'spiral transformation' to convert two-dimensional thin films containing microfabricated devices into one-dimensional soft fibres. This approach allows for the fabrication of high-density multimodal soft bioelectronic fibres, termed Spiral-NeuroString (S-NeuroString), while enabling precise control on the longitudinal, angular and radial positioning and distribution of the functional components. Taking advantage of the biocompatibility of our soft fibres with the dynamic and soft gastrointestinal system, we proceed to show the feasibility of our S-NeuroString for post-operative multimodal continuous motility mapping and tissue stimulation in awake pigs. We further demonstrate multi-channel single-unit electrical recording in mouse brain for up to 4 months, and a fabrication capability to produce 1,280 channels within a 230-μm-diameter soft fibre. Our soft bioelectronic fibres offer a powerful platform for minimally invasive implantable electronics, where diverse sensing and stimulation functionalities can be effectively integrated.
对于用于研究和临床应用的多模态传感与刺激生物电子纤维的需求日益增长。然而,现有的纤维存在刚性高、组件布局精度低、功能有限以及活性组件密度低等问题。这些限制源于将许多组件集成到一维纤维器件中的挑战,特别是由于传统微制造方法(例如光刻)与弯曲、细长的纤维结构不兼容。因此,迄今为止已展示的应用有限。在这里,我们使用“螺旋变换”将包含微制造器件的二维薄膜转换为一维柔软纤维。这种方法允许制造高密度多模态柔软生物电子纤维,称为螺旋神经线(S-NeuroString),同时能够精确控制功能组件的纵向、角度和径向定位及分布。利用我们的柔软纤维与动态且柔软的胃肠系统的生物相容性,我们进而展示了我们的S-NeuroString在清醒猪中进行术后多模态连续运动映射和组织刺激的可行性。我们进一步证明了在小鼠大脑中进行长达4个月的多通道单单元电记录,以及在直径为230μm的柔软纤维内制造1280个通道的能力。我们的柔软生物电子纤维为微创可植入电子设备提供了一个强大的平台,在该平台上可以有效集成各种传感和刺激功能。