Suppr超能文献

用于植物健康评估的叶片图像精确分割的自动化框架。

Automated framework for accurate segmentation of leaf images for plant health assessment.

机构信息

Electrical and Computer Engineering Department, Abu Dhabi University, Abu Dhabi, United Arab Emirates.

Bioengineering Department, University of Louisville, Louisville, KY, USA.

出版信息

Environ Monit Assess. 2019 Jul 12;191(8):491. doi: 10.1007/s10661-019-7615-9.

Abstract

Leaf segmentation is significantly important in assisting ecologists to automatically detect symptoms of disease and other stressors affecting trees. This paper employs state-of-the-art techniques in image processing to introduce an accurate framework for segmenting leaves and diseased leaf spots from images. The proposed framework integrates an appearance model that visually represents the current input image with the color prior information generated from RGB color images that were formerly saved in our database. Our framework consists of four main steps: (1) Enhancing the accuracy of the segmentation at minimum time by making use of contrast changes to automatically identify the region of interest (ROI) of the entire leaf, where the pixel-wise intensity relations are described by an electric field energy model. (2) Modeling the visual appearance of the input image using a linear combination of discrete Gaussians (LCDG) to predict the marginal probability distributions of the grayscale ROI main three classes. (3) Calculating the pixel-wise probabilities of these three classes for the color ROI based on the color prior information of database images that are segmented manually, where the current and prior pixel-wise probabilities are used to find the initial labels. (4) Refining the labels with the generalized Gauss-Markov random field model (GGMRF), which maintains the continuity. The proposed segmentation approach was applied to the leaves of mangrove trees in Abu Dhabi in the United Arab Emirates. Experimental validation showed high accuracy, with a Dice similarity coefficient 90% for distinguishing leaf spot from healthy leaf area.

摘要

叶片分割在协助生态学家自动检测影响树木的疾病和其他胁迫症状方面具有重要意义。本文采用图像处理的最新技术,提出了一种从图像中准确分割叶片和病斑的框架。该框架集成了一种外观模型,该模型通过使用 RGB 彩色图像中先前保存的颜色先验信息,以可视方式表示当前输入图像。我们的框架由四个主要步骤组成:(1)通过利用对比度变化自动识别整个叶片的感兴趣区域(ROI),从而在最小的时间内提高分割的准确性,其中像素强度关系由电场能量模型描述。(2)使用离散高斯的线性组合(LCDG)对输入图像的视觉外观进行建模,以预测灰度 ROI 主三个类别的边缘概率分布。(3)根据手动分割的数据库图像的颜色先验信息,计算彩色 ROI 的这三个类别的像素级概率,其中当前和先验像素级概率用于找到初始标签。(4)使用广义高斯-马尔可夫随机场模型(GGMRF)细化标签,以保持连续性。所提出的分割方法应用于阿拉伯联合酋长国阿布扎比的红树林叶片。实验验证表明,区分病斑和健康叶片区域的准确率很高,骰子相似系数为 90%。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验