Harvard Medical School, Boston, Massachusetts.
Division of General Internal Medicine and Primary Care, Brigham and Women's Hospital, Boston, Massachusetts.
JAMA Netw Open. 2019 Jul 3;2(7):e196972. doi: 10.1001/jamanetworkopen.2019.6972.
Early palliative care interventions drive high-value care but currently are underused. Health care professionals face challenges in identifying patients who may benefit from palliative care.
To develop a deep learning algorithm using longitudinal electronic health records to predict mortality risk as a proxy indicator for identifying patients with dementia who may benefit from palliative care.
DESIGN, SETTING, AND PARTICIPANTS: In this retrospective cohort study, 6-month, 1-year, and 2-year mortality prediction models with recurrent neural networks used patient demographic information and topics generated from clinical notes within Partners HealthCare System, an integrated health care delivery system in Boston, Massachusetts. This study included 26 921 adult patients with dementia who visited the health care system from January 1, 2011, through December 31, 2017. The models were trained using a data set of 24 229 patients and validated using another data set of 2692 patients. Data were analyzed from September 18, 2018, to May 15, 2019.
The area under the receiver operating characteristic curve (AUC) for 6-month and 1- and 2-year mortality prediction models and the factors contributing to the predictions.
The study cohort included 26 921 patients (16 263 women [60.4%]; mean [SD] age, 74.6 [13.5] years). For the 24 229 patients in the training data set, mean (SD) age was 74.8 (13.2) years and 14 632 (60.4%) were women. For the 2692 patients in the validation data set, mean (SD) age was 75.0 (12.6) years and 1631 (60.6%) were women. The 6-month model reached an AUC of 0.978 (95% CI, 0.977-0.978); the 1-year model, 0.956 (95% CI, 0.955-0.956); and the 2-year model, 0.943 (95% CI, 0.942-0.944). The top-ranked latent topics associated with 6-month and 1- and 2-year mortality in patients with dementia include palliative and end-of-life care, cognitive function, delirium, testing of cholesterol levels, cancer, pain, use of health care services, arthritis, nutritional status, skin care, family meeting, shock, respiratory failure, and swallowing function.
A deep learning algorithm based on patient demographic information and longitudinal clinical notes appeared to show promising results in predicting mortality among patients with dementia in different time frames. Further research is necessary to determine the feasibility of applying this algorithm in clinical settings for identifying unmet palliative care needs earlier.
早期姑息治疗干预措施可提供高价值的医疗服务,但目前尚未得到充分利用。医疗保健专业人员在识别可能受益于姑息治疗的患者方面面临挑战。
使用纵向电子健康记录开发深度学习算法,以预测死亡率作为识别可能受益于姑息治疗的痴呆症患者的替代指标。
设计、设置和参与者:在这项回顾性队列研究中,使用递归神经网络对 6 个月、1 年和 2 年的死亡率预测模型进行了研究,这些模型使用了马萨诸塞州波士顿综合医疗服务系统 Partners HealthCare System 中的患者人口统计学信息和从临床记录中生成的主题。该研究纳入了 2011 年 1 月 1 日至 2017 年 12 月 31 日期间就诊于该医疗系统的 26921 名成年痴呆症患者。该模型使用包含 24229 名患者的数据进行训练,并使用另外包含 2692 名患者的数据进行验证。数据于 2018 年 9 月 18 日至 2019 年 5 月 15 日进行了分析。
6 个月和 1 年和 2 年死亡率预测模型的受试者工作特征曲线下面积(AUC)和预测因素。
研究队列包括 26921 名患者(16263 名女性[60.4%];平均[标准差]年龄为 74.6[13.5]岁)。在训练数据集中的 24229 名患者中,平均(标准差)年龄为 74.8(13.2)岁,其中 14632 名(60.4%)为女性。在验证数据集中的 2692 名患者中,平均(标准差)年龄为 75.0(12.6)岁,其中 1631 名(60.6%)为女性。6 个月模型的 AUC 达到 0.978(95%CI,0.977-0.978);1 年模型为 0.956(95%CI,0.955-0.956);2 年模型为 0.943(95%CI,0.942-0.944)。与痴呆症患者 6 个月和 1 年及 2 年死亡率相关的排名最高的潜在主题包括姑息治疗和临终关怀、认知功能、谵妄、胆固醇水平检测、癌症、疼痛、医疗服务使用、关节炎、营养状况、皮肤护理、家庭会议、休克、呼吸衰竭和吞咽功能。
基于患者人口统计学信息和纵向临床记录的深度学习算法在预测不同时间范围内痴呆症患者的死亡率方面似乎显示出有前景的结果。需要进一步研究以确定该算法在临床环境中识别未满足的姑息治疗需求的可行性,以便更早地发现这些需求。