Suppr超能文献

DNA 拓扑异构酶抑制剂:捕获运动中的 DNA 切割机器。

DNA Topoisomerase Inhibitors: Trapping a DNA-Cleaving Machine in Motion.

机构信息

Medicines Discovery Institute, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, UK.

MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.

出版信息

J Mol Biol. 2019 Aug 23;431(18):3427-3449. doi: 10.1016/j.jmb.2019.07.008. Epub 2019 Jul 10.

Abstract

Type II topoisomerases regulate DNA topology by making a double-stranded break in one DNA duplex, transporting another DNA segment through this break and then resealing it. Bacterial type IIA topoisomerase inhibitors, such as fluoroquinolones and novel bacterial topoisomerase inhibitors, can trap DNA cleavage complexes with double- or single-stranded cleaved DNA. To study the mode of action of such compounds, 21 crystal structures of a "gyrase" fusion truncate of Staphyloccocus aureus DNA gyrase complexed with DNA and diverse inhibitors have been published, as well as 4 structures lacking inhibitors. These structures have the DNA in various cleavage states and appear to track trajectories along the catalytic paths of the DNA cleavage/religation steps. The various conformations sampled by these multiple "gyrase" structures show rigid body movements of the catalytic GyrA WHD and GyrB TOPRIM domains across the dimer interface. Conformational changes common to all compound-bound structures suggest common mechanisms for DNA cleavage-stabilizing compounds. The structures suggest that S. aureus gyrase uses a single moving-metal ion for cleavage and that the central four base pairs need to be stretched between the two catalytic sites, in order for a scissile phosphate to attract a metal ion to the A-site to catalyze cleavage, after which it is "stored" in another coordination configuration (B-site) in the vicinity. We present a simplified model for the catalytic cycle in which capture of the transported DNA segment causes conformational changes in the ATPase domain that push the DNA gate open, resulting in stretching and cleaving the gate-DNA in two steps.

摘要

II 型拓扑异构酶通过在一条 DNA 双链上制造一个双链断裂来调节 DNA 拓扑结构,将另一个 DNA 片段通过这个断裂转移,然后将其重新密封。细菌 IIA 型拓扑异构酶抑制剂,如氟喹诺酮类和新型细菌拓扑异构酶抑制剂,可以捕获具有双链或单链断裂 DNA 的 DNA 切割复合物。为了研究此类化合物的作用模式,已经发表了 21 个金黄色葡萄球菌 DNA 回旋酶复合物与 DNA 和各种抑制剂结合的“回旋酶”融合截断的晶体结构,以及 4 个缺乏抑制剂的结构。这些结构中的 DNA 处于各种切割状态,似乎沿着 DNA 切割/连接步骤的催化路径追踪轨迹。这些多个“回旋酶”结构采样的各种构象显示出催化 GyrA WHD 和 GyrB TOPRIM 结构域在二聚体界面上的刚性体运动。所有结合化合物的结构共有的构象变化表明 DNA 切割稳定化合物具有共同的机制。这些结构表明,金黄色葡萄球菌回旋酶使用单个移动金属离子进行切割,并且中央四个碱基对需要在两个催化位点之间拉伸,以便切割的磷酸酯吸引金属离子到 A 位以催化切割,之后它被“存储”在附近的另一个配位构型(B 位)中。我们提出了一个简化的催化循环模型,其中运输的 DNA 片段的捕获导致 ATP 酶结构域的构象变化,从而推动 DNA 门打开,导致两步拉伸和切割门 DNA。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6866/6723622/2cda5b6d662d/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验