From the Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520.
From the Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520
J Biol Chem. 2018 Apr 13;293(15):5377-5383. doi: 10.1074/jbc.AC118.001843. Epub 2018 Feb 20.
Cofilin/ADF proteins are actin-remodeling proteins, essential for actin disassembly in various cellular processes, including cell division, intracellular transport, and motility. Cofilins bind actin filaments cooperatively and sever them preferentially at boundaries between bare and cofilin-decorated (cofilactin) segments. The cooperative binding to actin has been proposed to originate from conformational changes that propagate allosterically from clusters of bound cofilin to bare actin segments. Estimates of the lengths over which these cooperative conformational changes propagate vary dramatically, ranging from 2 to >100 subunits. Here, we present a general, structure-based method for detecting from cryo-EM micrographs small variations in filament geometry ( twist) with single-subunit precision. How these variations correlate with regulatory protein occupancy reveals how far allosteric, conformational changes propagate along filaments. We used this method to determine the effects of cofilin on the actin filament twist. Our results indicate that cofilin-induced changes in filament twist propagate only 1-2 subunits from the boundary into the bare actin segment, independently of the boundary polarity ( irrespective of whether or not the bare actin segment flanks the pointed or barbed-end side of the boundary) and the pyrene fluorophore labeling of actin. These observations indicate that the filament twist changes abruptly at boundaries between bare and cofilin-decorated segments, thereby constraining mechanistic models of cooperative actin filament interactions and severing by cofilin. The methods presented here extend the capability of cryo-EM to analyze biologically relevant deviations from helical symmetry in actin as well as other classes of linear polymers.
丝切蛋白/辅肌动蛋白(Cofilin/ADF)蛋白是肌动蛋白重塑蛋白,对于各种细胞过程中的肌动蛋白解聚至关重要,包括细胞分裂、细胞内运输和运动。丝切蛋白协同结合肌动蛋白纤维,并优先在裸露肌动蛋白段和丝切蛋白修饰(丝切蛋白)段之间的边界处将其切断。协同结合肌动蛋白的现象被认为源于构象变化,该变化通过协同蛋白从结合丝切蛋白的簇传播到裸露的肌动蛋白段。这些协同构象变化传播的长度估计差异很大,范围从 2 个到>100 个亚基不等。在这里,我们提出了一种通用的、基于结构的方法,用于从冷冻电镜(cryo-EM)显微照片中以单亚基精度检测纤维几何形状(扭转)的微小变化。这些变化如何与调节蛋白占有率相关联揭示了构象变化沿着纤维传播的距离。我们使用该方法来确定丝切蛋白对肌动蛋白纤维扭转的影响。我们的结果表明,丝切蛋白诱导的纤维扭转变化仅从边界传播 1-2 个亚基进入裸露的肌动蛋白段,而与边界极性无关(无论裸露的肌动蛋白段位于边界的尖端还是片状末端侧)以及肌动蛋白的芘荧光标记。这些观察结果表明,在裸露和丝切蛋白修饰的段之间的边界处,纤维扭转会突然发生变化,从而限制了协同肌动蛋白纤维相互作用和丝切蛋白切断的机制模型。这里提出的方法扩展了冷冻电镜分析肌动蛋白以及其他线性聚合物中与螺旋对称性相关的生物学相关偏差的能力。