Graduate Program in Biophysical Sciences, University of Chicago, Chicago, Illinois.
Department of Physics & Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois; Institute for Biophysical Dynamics and James Franck Institute, University of Chicago, Chicago, Illinois.
Biophys J. 2024 Oct 1;123(19):3283-3294. doi: 10.1016/j.bpj.2024.06.014. Epub 2024 Jun 17.
Actin filament networks are exposed to mechanical stimuli, but the effect of strain on actin filament structure has not been well established in molecular detail. This is a critical gap in understanding because the activity of a variety of actin-binding proteins has recently been determined to be altered by actin filament strain. We therefore used all-atom molecular dynamics simulations to apply tensile strains to actin filaments and find that changes in actin subunit organization are minimal in mechanically strained, but intact, actin filaments. However, a conformational change disrupts the critical D-loop to W-loop connection between longitudinal neighboring subunits, which leads to a metastable cracked conformation of the actin filament whereby one protofilament is broken prior to filament severing. We propose that the metastable crack presents a force-activated binding site for actin regulatory factors that specifically associate with strained actin filaments. Through protein-protein docking simulations, we find that 43 evolutionarily diverse members of the dual zinc-finger-containing LIM-domain family, which localize to mechanically strained actin filaments, recognize two binding sites exposed at the cracked interface. Furthermore, through its interactions with the crack, LIM domains increase the length of time damaged filaments remain stable. Our findings propose a new molecular model for mechanosensitive binding to actin filaments.
肌动蛋白丝网络会受到机械刺激,但应变对肌动蛋白丝结构的影响在分子细节上尚未得到很好的确定。这是一个理解上的关键差距,因为最近已经确定,各种肌动蛋白结合蛋白的活性会因肌动蛋白丝应变而改变。因此,我们使用全原子分子动力学模拟对肌动蛋白丝施加拉伸应变,发现机械应变但完整的肌动蛋白丝中肌动蛋白亚基组织的变化很小。然而,构象变化会破坏纵向相邻亚基之间的关键 D 环到 W 环连接,从而导致肌动蛋白丝的亚稳定裂纹构象,其中一个原丝在丝断裂之前被破坏。我们提出,亚稳定的裂纹提供了一个力激活的结合位点,用于肌动蛋白调节因子,这些因子特异性地与应变肌动蛋白丝结合。通过蛋白-蛋白对接模拟,我们发现,双锌指含 LIM 结构域家族的 43 个进化上多样化的成员,它们定位于机械应变的肌动蛋白丝上,识别两个在裂纹界面暴露的结合位点。此外,通过与裂纹的相互作用,LIM 结构域增加了受损丝保持稳定的时间长度。我们的发现提出了一种新的机械敏感结合到肌动蛋白丝的分子模型。