文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

使用深度学习系统在内镜筛查早期食管鳞状细胞癌(附视频)。

Using a deep learning system in endoscopy for screening of early esophageal squamous cell carcinoma (with video).

机构信息

Endoscopy Center, Zhongshan Hospital of Fudan University, Shanghai, China; Endoscopy Research Institute of Fudan University, Shanghai, China.

School of Computer Science, Shanghai Key Laboratory of Intelligent Information Processing, Fudan University, Shanghai, China.

出版信息

Gastrointest Endosc. 2019 Nov;90(5):745-753.e2. doi: 10.1016/j.gie.2019.06.044. Epub 2019 Jul 11.


DOI:10.1016/j.gie.2019.06.044
PMID:31302091
Abstract

BACKGROUND AND AIMS: Few artificial intelligence-based technologies have been developed to improve the efficiency of screening for esophageal squamous cell carcinoma (ESCC). Here, we developed and validated a novel system of computer-aided detection (CAD) using a deep neural network (DNN) to localize and identify early ESCC under conventional endoscopic white-light imaging. METHODS: We collected 2428 (1332 abnormal, 1096 normal) esophagoscopic images from 746 patients to set up a novel DNN-CAD system in 2 centers and prepared a validation dataset containing 187 images from 52 patients. Sixteen endoscopists (senior, mid-level, and junior) were asked to review the images of the validation set. The diagnostic results, including accuracy, sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV), were compared between the DNN-CAD system and endoscopists. RESULTS: The receiver operating characteristic curve for DNN-CAD showed that the area under the curve was >96%. For the validation dataset, DNN-CAD had a sensitivity, specificity, accuracy, PPV, and NPV of 97.8%, 85.4%, 91.4%, 86.4%, and 97.6%, respectively. The senior group achieved an average diagnostic accuracy of 88.8%, whereas the junior group had a lower value of 77.2%. After referring to the results of DNN-CAD, the average diagnostic ability of the endoscopists improved, especially in terms of sensitivity (74.2% vs 89.2%), accuracy (81.7% vs 91.1%), and NPV (79.3% vs 90.4%). CONCLUSIONS: The novel DNN-CAD system used for screening of early ESCC has high accuracy and sensitivity, and can help endoscopists to detect lesions previously ignored under white-light imaging.

摘要

背景与目的:目前开发的人工智能技术很少用于提高食管鳞状细胞癌(ESCC)筛查的效率。在这里,我们开发并验证了一种使用深度神经网络(DNN)在常规内镜白光成像下定位和识别早期 ESCC 的新型计算机辅助检测(CAD)系统。

方法:我们在 2 个中心收集了 746 名患者的 2428 张(1332 张异常,1096 张正常)食管内窥镜图像,建立了一种新型的 DNN-CAD 系统,并准备了一个包含 52 名患者的 187 张图像的验证数据集。16 名内镜医生(高级、中级和初级)被要求检查验证集的图像。比较 DNN-CAD 系统和内镜医生的诊断结果,包括准确性、敏感性、特异性、阳性预测值(PPV)和阴性预测值(NPV)。

结果:DNN-CAD 的受试者工作特征曲线表明,曲线下面积>96%。对于验证数据集,DNN-CAD 的敏感性、特异性、准确性、PPV 和 NPV 分别为 97.8%、85.4%、91.4%、86.4%和 97.6%。高级组的平均诊断准确率为 88.8%,而初级组的诊断准确率较低,为 77.2%。在参考 DNN-CAD 的结果后,内镜医生的平均诊断能力得到了提高,特别是在敏感性(74.2%对 89.2%)、准确性(81.7%对 91.1%)和 NPV(79.3%对 90.4%)方面。

结论:用于筛查早期 ESCC 的新型 DNN-CAD 系统具有较高的准确性和敏感性,可帮助内镜医生检测白光成像下先前忽略的病变。

相似文献

[1]
Using a deep learning system in endoscopy for screening of early esophageal squamous cell carcinoma (with video).

Gastrointest Endosc. 2019-7-11

[2]
Accurate Classification of Diminutive Colorectal Polyps Using Computer-Aided Analysis.

Gastroenterology. 2017-10-16

[3]
Comparative study on artificial intelligence systems for detecting early esophageal squamous cell carcinoma between narrow-band and white-light imaging.

World J Gastroenterol. 2021-1-21

[4]
Application of an artificial intelligence system for endoscopic diagnosis of superficial esophageal squamous cell carcinoma.

World J Gastroenterol. 2022-10-7

[5]
[Establishment and clinical validation of an artificial intelligence YOLOv51 model for the detection of precancerous lesions and superficial esophageal cancer in endoscopic procedure].

Zhonghua Zhong Liu Za Zhi. 2022-5-23

[6]
Real-time automated diagnosis of precancerous lesions and early esophageal squamous cell carcinoma using a deep learning model (with videos).

Gastrointest Endosc. 2019-8-21

[7]
Endoscopic detection and differentiation of esophageal lesions using a deep neural network.

Gastrointest Endosc. 2020-2

[8]
Computer-aided diagnostic system with automated deep learning method based on the AutoGluon framework improved the diagnostic accuracy of early esophageal cancer.

J Gastrointest Oncol. 2024-4-30

[9]
Application of artificial intelligence using convolutional neural networks in determining the invasion depth of esophageal squamous cell carcinoma.

Esophagus. 2020-7

[10]
Computer-aided diagnosis of prostate cancer using a deep convolutional neural network from multiparametric MRI.

J Magn Reson Imaging. 2018-4-16

引用本文的文献

[1]
AI-enhanced rapid diagnostic testing platform for mass opisthorchiasis screening.

Sci Rep. 2025-8-23

[2]
Postoperative outcome analysis of chronic rhinosinusitis using transfer learning with pre-trained foundation models based on endoscopic images: a multicenter, observational study.

Biomed Eng Online. 2025-7-27

[3]
Optimizing Esophageal Cancer Diagnosis with Computer-Aided Detection by YOLO Models Combined with Hyperspectral Imaging.

Diagnostics (Basel). 2025-7-2

[4]
Clinical validation of AI assisted animal ultrasound models for diagnosis of early liver trauma.

Sci Rep. 2025-7-2

[5]
Effects of artificial intelligence assistance on endoscopist performance: Comparison of diagnostic performance in superficial esophageal squamous cell carcinoma detection using video-based models.

DEN Open. 2025-5-2

[6]
Artificial Intelligence in Endoscopy: A Narrative Review.

Ulster Med J. 2025-4

[7]
Effect of computer aided detection system on esophageal neoplasm diagnosis in varied levels of endoscopists.

NPJ Digit Med. 2025-3-13

[8]
Artificial intelligence in endoscopic diagnosis of esophageal squamous cell carcinoma and precancerous lesions.

Chin Med J (Engl). 2025-6-20

[9]
A F-FDG PET/CT-based deep learning-radiomics-clinical model for prediction of cervical lymph node metastasis in esophageal squamous cell carcinoma.

Cancer Imaging. 2024-11-12

[10]
Applications of artificial intelligence in emergency and critical care diagnostics: a systematic review and meta-analysis.

Front Artif Intell. 2024-10-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索