Suppr超能文献

角化细胞在 3D 组织感染模型中保护牙科种植材料的软组织整合,防止细菌的挑战。

Keratinocytes protect soft-tissue integration of dental implant materials against bacterial challenges in a 3D-tissue infection model.

机构信息

University of Groningen and University Medical Center of Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.

University of Groningen and University Medical Center of Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.

出版信息

Acta Biomater. 2019 Sep 15;96:237-246. doi: 10.1016/j.actbio.2019.07.015. Epub 2019 Jul 11.

Abstract

The soft-tissue seal around dental implants protects the osseo-integrated screw against bacterial challenges. Surface properties of the implant material are crucial for implant survival against bacterial challenges, but there is no adequate in vitro model mimicking the soft-tissue seal around dental implants. Here, we set up a 3D-tissue model of the soft-tissue seal, in order to establish the roles of oral keratinocytes, gingival fibroblasts and materials surface properties in the protective seal. To this end, keratinocytes were grown on membrane filters in a transwell system, while fibroblasts were adhering to TiO surfaces underneath the membrane. In absence of keratinocytes on the membrane, fibroblasts growing on the TiO surface could not withstand challenges by commensal streptococci or pathogenic staphylococci. Keratinocytes growing on the membrane filters could withstand bacterial challenges, but tight junctions widened to allow invasion of bacteria to the underlying fibroblast layer in lower numbers than in absence of keratinocytes. The challenge of this bacterial invasion to the fibroblast layer on the TiO surface negatively affected tissue integration of the surface, demonstrating the protective barrier role of keratinocytes. Streptococci caused less damage to fibroblasts than staphylococci. Importantly, the protection offered by the soft-tissue seal appeared sensitive to surface properties of the implant material. Integration by fibroblasts of a hydrophobic silicone rubber surface was affected more upon bacterial challenges than integration of more hydrophilic hydroxyapatite or TiO surfaces. This differential response to different surface-chemistries makes the 3D-tissue infection model presented a useful tool in the development of new infection-resistant dental implant materials. STATEMENT OF SIGNIFICANCE: Failure rates of dental implants due to infection are surprisingly low, considering their functioning in the highly un-sterile oral cavity. This is attributed to the soft-tissue seal, protecting the osseo-integrated implant part against bacterial invasion. The seal consists of a layer of keratinocytes covering gingival fibroblasts, integrating the implant. Implant failure involves high patient discomfort and costs of replacing an infected implant, which necessitates development of improved, infection-resistant dental implant materials. New materials are often evaluated in mono-culture, examining bacterial adhesion or tissue interactions separately and neglecting the 3D-structure of the tissue seal. A 3D-tissue model allows to study new materials in a more relevant way, in which interactions between keratinocytes, gingival fibroblast, bacteria and materials surfaces are accounted for.

摘要

种植体周围的软组织密封可保护骨整合螺钉免受细菌的侵害。种植体材料的表面特性对于种植体抵御细菌挑战至关重要,但目前还没有足够的体外模型来模拟种植体周围的软组织密封。在这里,我们建立了软组织密封的 3D 组织模型,以确定口腔角质形成细胞、牙龈成纤维细胞和材料表面特性在保护密封中的作用。为此,将角质形成细胞在 Transwell 系统中的膜过滤器上生长,而成纤维细胞附着在膜下的 TiO 表面上。在膜上没有角质形成细胞的情况下,在 TiO 表面上生长的成纤维细胞无法承受共生链球菌或致病性葡萄球菌的挑战。在膜过滤器上生长的角质形成细胞可以承受细菌的挑战,但紧密连接加宽,允许细菌以比没有角质形成细胞时更少的数量侵入下面的成纤维细胞层。这种细菌对 TiO 表面上成纤维细胞层的侵袭挑战会对表面的组织整合产生负面影响,证明了角质形成细胞的保护屏障作用。链球菌对成纤维细胞的损伤小于葡萄球菌。重要的是,软组织密封提供的保护似乎对种植体材料的表面特性敏感。与更亲水的羟基磷灰石或 TiO 表面相比,细菌挑战对疏水性硅橡胶表面的成纤维细胞的整合影响更大。这种对不同表面化学性质的不同反应使得所提出的 3D 组织感染模型成为开发新的抗感染牙科植入物材料的有用工具。

意义声明

考虑到种植体在高度非无菌口腔中的功能,由于感染导致的种植体失败率令人惊讶地低。这归因于软组织密封,保护骨整合种植体部分免受细菌入侵。密封层由覆盖牙龈成纤维细胞的角质形成细胞层组成,整合了植入物。植入物失效会给患者带来高度不适,并增加更换感染植入物的成本,这需要开发改进的、抗感染的牙科植入物材料。新材料通常在单一培养中进行评估,分别检查细菌粘附或组织相互作用,而忽略了组织密封的 3D 结构。3D 组织模型允许以更相关的方式研究新材料,其中考虑了角质形成细胞、牙龈成纤维细胞、细菌和材料表面之间的相互作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验