Suppr超能文献

基于深度学习的无标记胰腺肿瘤靶区定位。

Markerless Pancreatic Tumor Target Localization Enabled By Deep Learning.

机构信息

Department of Radiation Oncology, Stanford University, Stanford, California.

Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.

出版信息

Int J Radiat Oncol Biol Phys. 2019 Oct 1;105(2):432-439. doi: 10.1016/j.ijrobp.2019.05.071. Epub 2019 Jun 13.

Abstract

PURPOSE

Deep learning is an emerging technique that allows us to capture imaging information beyond the visually recognizable level of a human being. Because of the anatomic characteristics and location, on-board target verification for radiation delivery to pancreatic tumors is a challenging task. Our goal was to use a deep neural network to localize the pancreatic tumor target on kV x-ray images acquired using an on-board imager for image guided radiation therapy.

METHODS AND MATERIALS

The network is set up in such a way that the input is either a digitally reconstructed radiograph image or a monoscopic x-ray projection image acquired by the on-board imager from a given direction, and the output is the location of the planning target volume in the projection image. To produce a sufficient number of training x-ray images reflecting the vast number of possible clinical scenarios of anatomy distribution, a series of changes were introduced to the planning computed tomography images, including deformation, rotation, and translation, to simulate inter- and intrafractional variations. After model training, the accuracy of the model was evaluated by retrospectively studying patients who underwent pancreatic cancer radiation therapy. Statistical analysis using mean absolute differences (MADs) and Lin's concordance correlation coefficient were used to assess the accuracy of the predicted target positions.

RESULTS

MADs between the model-predicted and the actual positions were found to be less than 2.60 mm in anteroposterior, lateral, and oblique directions for both axes in the detector plane. For comparison studies with and without fiducials, MADs are less than 2.49 mm. For all cases, Lin's concordance correlation coefficients between the predicted and actual positions were found to be better than 93%, demonstrating the success of the proposed deep learning for image guided radiation therapy.

CONCLUSIONS

We demonstrated that markerless pancreatic tumor target localization is achievable with high accuracy by using a deep learning technique approach.

摘要

目的

深度学习是一种新兴技术,它使我们能够捕捉超出人类视觉可识别水平的成像信息。由于解剖学特征和位置的原因,对于在胰腺肿瘤的放射治疗中进行机载目标验证是一项具有挑战性的任务。我们的目标是使用深度神经网络来定位在图像引导放射治疗中使用机载成像仪获取的千伏 X 射线图像上的胰腺肿瘤靶区。

方法和材料

该网络的设置方式是,输入可以是数字重建射线照片图像,也可以是机载成像仪从给定方向获取的单目 X 射线投影图像,输出是在投影图像中计划靶区体积的位置。为了产生足够数量的反映解剖分布的大量可能临床情况的训练 X 射线图像,对计划 CT 图像进行了一系列的变化,包括变形、旋转和平移,以模拟分次内和分次间的变化。在模型训练完成后,通过回顾性研究接受胰腺癌放射治疗的患者来评估模型的准确性。使用平均绝对差异(MAD)和林氏一致性相关系数进行统计分析,以评估预测目标位置的准确性。

结果

在探测器平面的前后、左右和斜向两个轴上,模型预测和实际位置之间的 MADs 均小于 2.60 毫米。对于有和没有基准标记的比较研究,MADs 小于 2.49 毫米。对于所有病例,预测位置和实际位置之间的林氏一致性相关系数均大于 93%,表明所提出的用于图像引导放射治疗的深度学习方法是成功的。

结论

我们证明了通过使用深度学习技术可以实现高精度的无标记胰腺肿瘤靶区定位。

相似文献

1
Markerless Pancreatic Tumor Target Localization Enabled By Deep Learning.基于深度学习的无标记胰腺肿瘤靶区定位。
Int J Radiat Oncol Biol Phys. 2019 Oct 1;105(2):432-439. doi: 10.1016/j.ijrobp.2019.05.071. Epub 2019 Jun 13.

引用本文的文献

6
Artificial intelligence for treatment delivery: image-guided radiotherapy.用于治疗的人工智能:图像引导放射治疗
Strahlenther Onkol. 2025 Mar;201(3):283-297. doi: 10.1007/s00066-024-02277-9. Epub 2024 Aug 13.
7
An overview of artificial intelligence in medical physics and radiation oncology.医学物理与放射肿瘤学中的人工智能概述。
J Natl Cancer Cent. 2023 Aug 11;3(3):211-221. doi: 10.1016/j.jncc.2023.08.002. eCollection 2023 Sep.

本文引用的文献

6
Cancer Statistics, 2017.《2017 年癌症统计》
CA Cancer J Clin. 2017 Jan;67(1):7-30. doi: 10.3322/caac.21387. Epub 2017 Jan 5.
9
Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks.更快的 R-CNN:基于区域建议网络的实时目标检测。
IEEE Trans Pattern Anal Mach Intell. 2017 Jun;39(6):1137-1149. doi: 10.1109/TPAMI.2016.2577031. Epub 2016 Jun 6.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验