Suppr超能文献

通过结合深度卷积神经网络和手工制作特征来预测肺结节恶性肿瘤。

Predicting lung nodule malignancies by combining deep convolutional neural network and handcrafted features.

机构信息

Guangdong Provincial Key Laboratory of Medical Image Processing, School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, People's Republic of China.

出版信息

Phys Med Biol. 2019 Sep 4;64(17):175012. doi: 10.1088/1361-6560/ab326a.

Abstract

To predict lung nodule malignancy with a high sensitivity and specificity for low dose CT (LDCT) lung cancer screening, we propose a fusion algorithm that combines handcrafted features (HF) into the features learned at the output layer of a 3D deep convolutional neural network (CNN). First, we extracted twenty-nine HF, including nine intensity features, eight geometric features, and twelve texture features based on grey-level co-occurrence matrix (GLCM). We then trained 3D CNNs modified from three 2D CNN architectures (AlexNet, VGG-16 Net and Multi-crop Net) to extract the CNN features learned at the output layer. For each 3D CNN, the CNN features combined with the 29 HF were used as the input for the support vector machine (SVM) coupled with the sequential forward feature selection (SFS) method to select the optimal feature subset and construct the classifiers. The fusion algorithm takes full advantage of the HF and the highest level CNN features learned at the output layer. It can overcome the disadvantage of the HF that may not fully reflect the unique characteristics of a particular lesion by combining the intrinsic CNN features. Meanwhile, it also alleviates the requirement of a large scale annotated dataset for the CNNs based on the complementary of HF. The patient cohort includes 431 malignant nodules and 795 benign nodules extracted from the LIDC/IDRI database. For each investigated CNN architecture, the proposed fusion algorithm achieved the highest AUC, accuracy, sensitivity, and specificity scores among all competitive classification models.

摘要

为了在低剂量 CT(LDCT)肺癌筛查中实现对肺结节恶性肿瘤的高灵敏度和特异性预测,我们提出了一种融合算法,该算法将手工制作的特征(HF)合并到三维深度卷积神经网络(CNN)输出层学习到的特征中。首先,我们提取了 29 个 HF,包括 9 个强度特征、8 个几何特征和 12 个纹理特征,这些特征是基于灰度共生矩阵(GLCM)提取的。然后,我们对三种二维 CNN 架构(AlexNet、VGG-16 Net 和多裁剪 Net)进行了修改,以提取输出层学习到的 CNN 特征,训练了三个 3D CNN。对于每个 3D CNN,将 CNN 特征与 29 个 HF 相结合作为支持向量机(SVM)的输入,同时结合序贯前向特征选择(SFS)方法选择最佳特征子集并构建分类器。融合算法充分利用了 HF 和输出层学习到的最高水平的 CNN 特征。它可以克服 HF 的缺点,HF 可能无法完全反映特定病变的独特特征,通过与内在的 CNN 特征相结合。同时,它还减轻了 HF 对 CNN 的大规模注释数据集的要求,HF 对 CNN 起到了互补作用。患者队列包括从 LIDC/IDRI 数据库中提取的 431 个恶性结节和 795 个良性结节。对于每个被调查的 CNN 架构,所提出的融合算法在所有竞争分类模型中实现了最高的 AUC、准确性、灵敏度和特异性评分。

相似文献

7
CAD system for lung nodule detection using deep learning with CNN.基于卷积神经网络的深度学习肺结节检测 CAD 系统。
Med Biol Eng Comput. 2022 Jan;60(1):221-228. doi: 10.1007/s11517-021-02462-3. Epub 2021 Nov 22.

引用本文的文献

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验