Living Systems Institute, University of Exeter, Exeter, EX4 4QD, UK.
Centre for Biomedical Modelling and Analysis, University of Exeter, Exeter, EX4 4QD, UK.
Sci Rep. 2019 Jul 15;9(1):10169. doi: 10.1038/s41598-019-46633-7.
Seizure onset in epilepsy can usually be classified as focal or generalized, based on a combination of clinical phenomenology of the seizures, EEG recordings and MRI. This classification may be challenging when seizures and interictal epileptiform discharges are infrequent or discordant, and MRI does not reveal any apparent abnormalities. To address this challenge, we introduce the concept of Ictogenic Spread (IS) as a prediction of how pathological electrical activity associated with seizures will propagate throughout a brain network. This measure is defined using a person-specific computer representation of the functional network of the brain, constructed from interictal EEG, combined with a computer model of the transition from background to seizure-like activity within nodes of a distributed network. Applying this method to a dataset comprising scalp EEG from 38 people with epilepsy (17 with genetic generalized epilepsy (GGE), 21 with mesial temporal lobe epilepsy (mTLE)), we find that people with GGE display a higher IS in comparison to those with mTLE. We propose IS as a candidate computational biomarker to classify focal and generalized epilepsy using interictal EEG.
癫痫发作通常可以根据发作的临床表型、脑电图记录和 MRI 综合分类为局灶性或全面性。当发作和发作间期癫痫样放电不频繁或不一致,且 MRI 未显示任何明显异常时,这种分类可能具有挑战性。为了解决这一挑战,我们提出了致痫扩散(ictogenic spread,IS)的概念,作为预测与发作相关的病理性电活动如何在大脑网络中传播的一种方法。该方法使用个体特定的大脑功能网络计算机表示形式来定义,该网络是由发作间期 EEG 构建的,并结合了分布式网络节点中从背景到类似发作活动的转变的计算机模型。将该方法应用于包含 38 名癫痫患者(17 名遗传性全面性癫痫(genetic generalized epilepsy,GGE)患者,21 名内侧颞叶癫痫(mesial temporal lobe epilepsy,mTLE)患者)的头皮 EEG 数据集,我们发现 GGE 患者的 IS 比 mTLE 患者更高。我们提出 IS 作为一种候选计算生物标志物,用于使用发作间期 EEG 对局灶性和全面性癫痫进行分类。