Suppr超能文献

单细胞技术揭示的肿瘤生态系统的空间和基因组层次结构

The Spatial and Genomic Hierarchy of Tumor Ecosystems Revealed by Single-Cell Technologies.

作者信息

Smith Eric A, Hodges H Courtney

机构信息

Department of Molecular and Cellular Biology and Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030, USA.

Department of Molecular and Cellular Biology and Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030, USA; Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA; Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Bioengineering, Rice University, Houston, TX 77005, USA.

出版信息

Trends Cancer. 2019 Jul;5(7):411-425. doi: 10.1016/j.trecan.2019.05.009. Epub 2019 Jun 18.

Abstract

Many malignancies display heterogeneous features that support cancer progression. Emerging high-resolution methods provide a view of heterogeneity that recognizes the influence of diverse cell types and cell states of the tumor microenvironment. Here we outline a hierarchical organization of tumor heterogeneity from a genomic perspective, summarize the origins of spatially patterned metabolic features, and review recent developments in single-cell and spatially resolved techniques for genome-wide study of multicellular tissues. We also discuss how integrating these approaches can yield new insights into human cancer and emerging immune therapies. Applying these technologies for the analysis of primary tumors, patient-derived xenografts, and in vitro systems holds great promise for understanding the hierarchical structure and environmental influences that underlie tumor ecosystems.

摘要

许多恶性肿瘤表现出支持癌症进展的异质性特征。新兴的高分辨率方法提供了一种异质性视角,该视角认识到肿瘤微环境中不同细胞类型和细胞状态的影响。在这里,我们从基因组学角度概述肿瘤异质性的层次结构,总结空间模式化代谢特征的起源,并综述用于多细胞组织全基因组研究的单细胞和空间分辨技术的最新进展。我们还讨论了整合这些方法如何能够对人类癌症和新兴免疫疗法产生新的见解。将这些技术应用于原发性肿瘤、患者来源的异种移植和体外系统的分析,对于理解构成肿瘤生态系统基础的层次结构和环境影响具有巨大潜力。

相似文献

5
Tumour heterogeneity and metastasis at single-cell resolution.单细胞分辨率下的肿瘤异质性和转移。
Nat Cell Biol. 2018 Dec;20(12):1349-1360. doi: 10.1038/s41556-018-0236-7. Epub 2018 Nov 26.
7
Advances in spatial multi-omics in tumors.肿瘤空间多组学研究进展。
Tumori. 2024 Oct;110(5):327-339. doi: 10.1177/03008916241271458. Epub 2024 Aug 26.
10
Evolutionary scalpels for dissecting tumor ecosystems.用于剖析肿瘤生态系统的进化手术刀。
Biochim Biophys Acta Rev Cancer. 2017 Apr;1867(2):69-83. doi: 10.1016/j.bbcan.2016.11.005. Epub 2016 Dec 5.

引用本文的文献

1
Knowledge-Informed Machine Learning for Cancer Diagnosis and Prognosis: A Review.用于癌症诊断和预后的知识驱动型机器学习综述
IEEE Trans Autom Sci Eng. 2025;22:10008-10028. doi: 10.1109/tase.2024.3515839. Epub 2024 Dec 18.
9
Systematic analysis of lysine lactylation in nucleus pulposus cells.髓核细胞中赖氨酸乳酰化的系统分析。
iScience. 2024 Oct 11;27(11):111157. doi: 10.1016/j.isci.2024.111157. eCollection 2024 Nov 15.

本文引用的文献

2
Profiling of Pluripotency Factors in Single Cells and Early Embryos.单细胞和早期胚胎多能性因子的分析。
Cell. 2019 May 16;177(5):1319-1329.e11. doi: 10.1016/j.cell.2019.03.014. Epub 2019 Apr 4.
5
Resolving genetic heterogeneity in cancer.解析癌症中的遗传异质性。
Nat Rev Genet. 2019 Jul;20(7):404-416. doi: 10.1038/s41576-019-0114-6.
7
Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH.基于 RNA seqFISH 的转录组尺度超分辨组织成像
Nature. 2019 Apr;568(7751):235-239. doi: 10.1038/s41586-019-1049-y. Epub 2019 Mar 25.
8
Neoantigen-directed immune escape in lung cancer evolution.肺癌进化中的新抗原定向免疫逃逸。
Nature. 2019 Mar;567(7749):479-485. doi: 10.1038/s41586-019-1032-7. Epub 2019 Mar 20.
10
Toward understanding cancer stem cell heterogeneity in the tumor microenvironment.为了理解肿瘤微环境中的癌症干细胞异质性。
Proc Natl Acad Sci U S A. 2019 Jan 2;116(1):148-157. doi: 10.1073/pnas.1815345116. Epub 2018 Dec 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验