Suppr超能文献

根特异型卡那霉素生物合成控制多种细菌菌株的促植物生长效应。

Root-specific camalexin biosynthesis controls the plant growth-promoting effects of multiple bacterial strains.

机构信息

Botanical Institute, University of Cologne, 50674 Cologne, Germany.

Cluster of Excellence on Plant Sciences, University of Cologne, 50674 Cologne, Germany.

出版信息

Proc Natl Acad Sci U S A. 2019 Jul 30;116(31):15735-15744. doi: 10.1073/pnas.1818604116. Epub 2019 Jul 16.

Abstract

Plants in their natural ecosystems interact with numerous microorganisms, but how they influence their microbiota is still elusive. We observed that sulfatase activity in soil, which can be used as a measure of rhizosphere microbial activity, is differently affected by accessions. Following a genome-wide association analysis of the variation in sulfatase activity we identified a candidate gene encoding an uncharacterized cytochrome P450, Loss of this gene resulted in 2 different and independent microbiota-specific phenotypes: A lower sulfatase activity in the rhizosphere and a loss of plant growth-promoting effect by sp. CH267. On the other hand, tolerance to leaf pathogens was not affected, which agreed with prevalent expression of in the root vasculature. The phenotypes of mutant were similar to those of and , known mutants in synthesis of camalexin, a sulfur-containing indolic defense compound. Indeed, the mutant accumulated less camalexin in the roots upon elicitation with silver nitrate or flagellin. Importantly, addition of camalexin complemented both the sulfatase activity and the loss of plant growth promotion by sp. CH267. Two alleles of were identified among accessions, differing by a substitution of Glu373 by Gln, which correlated with the ability to induce camalexin synthesis and to gain fresh weight in response to sp. CH267. Thus, CYP71A27 is an additional component in the camalexin synthesis pathway, contributing specifically to the control of plant microbe interactions in the root.

摘要

在自然生态系统中,植物与众多微生物相互作用,但它们如何影响其微生物群仍然难以捉摸。我们观察到,土壤中的磺酸盐酶活性可以作为根际微生物活性的衡量标准,而这种活性受到不同品系的影响。在对磺酸盐酶活性的变异进行全基因组关联分析后,我们鉴定出一个编码未鉴定细胞色素 P450 的候选基因,该基因的缺失导致了两种不同的、独立的、针对微生物组的表型:根际中的磺酸盐酶活性降低和 sp. CH267 失去促进植物生长的作用。另一方面,对叶片病原体的耐受性不受影响,这与该基因在根系脉管系统中的普遍表达一致。突变体的表型与 camalexin 合成突变体和 相似,camalexin 是一种含硫吲哚防御化合物。事实上,突变体在根中积累的 camalexin 较少,当用硝酸银或鞭毛蛋白激发时。重要的是,添加 camalexin 补充了 sp. CH267 引起的磺酸盐酶活性和植物生长促进作用的丧失。在 品系中鉴定出 的两个等位基因,其差异在于 Glu373 被 Gln 取代,这与诱导 camalexin 合成和响应 sp. CH267 获得鲜重的能力相关。因此,CYP71A27 是 camalexin 合成途径中的另一个组成部分,专门参与控制植物与微生物在根部的相互作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1296/6681745/5c50cdbe17d2/pnas.1818604116fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验