Castrillo Gabriel, Teixeira Paulo José Pereira Lima, Paredes Sur Herrera, Law Theresa F, de Lorenzo Laura, Feltcher Meghan E, Finkel Omri M, Breakfield Natalie W, Mieczkowski Piotr, Jones Corbin D, Paz-Ares Javier, Dangl Jeffery L
Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599-3280, USA.
Howard Hughes Medical Institute, University of North Carolina, Chapel Hill, North Carolina 27599-3280, USA.
Nature. 2017 Mar 23;543(7646):513-518. doi: 10.1038/nature21417. Epub 2017 Mar 15.
Plants live in biogeochemically diverse soils with diverse microbiota. Plant organs associate intimately with a subset of these microbes, and the structure of the microbial community can be altered by soil nutrient content. Plant-associated microbes can compete with the plant and with each other for nutrients, but may also carry traits that increase the productivity of the plant. It is unknown how the plant immune system coordinates microbial recognition with nutritional cues during microbiome assembly. Here we establish that a genetic network controlling the phosphate stress response influences the structure of the root microbiome community, even under non-stress phosphate conditions. We define a molecular mechanism regulating coordination between nutrition and defence in the presence of a synthetic bacterial community. We further demonstrate that the master transcriptional regulators of phosphate stress response in Arabidopsis thaliana also directly repress defence, consistent with plant prioritization of nutritional stress over defence. Our work will further efforts to define and deploy useful microbes to enhance plant performance.
植物生长在具有生物地球化学多样性且微生物群多样的土壤中。植物器官与这些微生物的一个子集密切相关,并且微生物群落的结构会因土壤养分含量而改变。与植物相关的微生物会与植物以及彼此竞争养分,但也可能具有提高植物生产力的特性。目前尚不清楚植物免疫系统在微生物群落组装过程中如何将微生物识别与营养线索相协调。在这里,我们确定了一个控制磷酸盐胁迫反应的遗传网络会影响根微生物群落的结构,即使在非胁迫性磷酸盐条件下也是如此。我们定义了一种在合成细菌群落存在的情况下调节营养与防御之间协调的分子机制。我们进一步证明,拟南芥中磷酸盐胁迫反应的主要转录调节因子也直接抑制防御,这与植物将营养胁迫置于防御之上的优先级一致。我们的工作将推动进一步努力来定义和部署有益微生物以提高植物性能。