Suppr超能文献

土壤微生物在植物矿质营养中的作用——当前认知与未来方向

The Role of Soil Microorganisms in Plant Mineral Nutrition-Current Knowledge and Future Directions.

作者信息

Jacoby Richard, Peukert Manuela, Succurro Antonella, Koprivova Anna, Kopriva Stanislav

机构信息

Botanical Institute, Cluster of Excellence on Plant Sciences (CEPLAS), University of CologneCologne, Germany.

出版信息

Front Plant Sci. 2017 Sep 19;8:1617. doi: 10.3389/fpls.2017.01617. eCollection 2017.

Abstract

In their natural environment, plants are part of a rich ecosystem including numerous and diverse microorganisms in the soil. It has been long recognized that some of these microbes, such as mycorrhizal fungi or nitrogen fixing symbiotic bacteria, play important roles in plant performance by improving mineral nutrition. However, the full range of microbes associated with plants and their potential to replace synthetic agricultural inputs has only recently started to be uncovered. In the last few years, a great progress has been made in the knowledge on composition of rhizospheric microbiomes and their dynamics. There is clear evidence that plants shape microbiome structures, most probably by root exudates, and also that bacteria have developed various adaptations to thrive in the rhizospheric niche. The mechanisms of these interactions and the processes driving the alterations in microbiomes are, however, largely unknown. In this review, we focus on the interaction of plants and root associated bacteria enhancing plant mineral nutrition, summarizing the current knowledge in several research fields that can converge to improve our understanding of the molecular mechanisms underpinning this phenomenon.

摘要

在自然环境中,植物是丰富生态系统的一部分,土壤中存在着大量多样的微生物。长期以来,人们已经认识到其中一些微生物,如菌根真菌或固氮共生细菌,通过改善矿物质营养在植物生长中发挥重要作用。然而,与植物相关的微生物的全貌及其替代合成农业投入物的潜力直到最近才开始被揭示。在过去几年中,关于根际微生物群落组成及其动态变化的知识取得了巨大进展。有明确证据表明,植物很可能通过根系分泌物塑造微生物群落结构,而且细菌也已经发展出各种适应性以在根际生态位中繁衍。然而,这些相互作用的机制以及驱动微生物群落变化的过程在很大程度上尚不清楚。在本综述中,我们聚焦于植物与根系相关细菌之间增强植物矿物质营养的相互作用,总结了几个研究领域的现有知识,这些领域可以相互融合,以增进我们对这一现象背后分子机制的理解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7804/5610682/a799e45fdf74/fpls-08-01617-g001.jpg

相似文献

1
The Role of Soil Microorganisms in Plant Mineral Nutrition-Current Knowledge and Future Directions.
Front Plant Sci. 2017 Sep 19;8:1617. doi: 10.3389/fpls.2017.01617. eCollection 2017.
4
The Sorghum bicolor Root Exudate Sorgoleone Shapes Bacterial Communities and Delays Network Formation.
mSystems. 2021 Mar 16;6(2):e00749-20. doi: 10.1128/mSystems.00749-20.
5
Microbial Hub Taxa Link Host and Abiotic Factors to Plant Microbiome Variation.
PLoS Biol. 2016 Jan 20;14(1):e1002352. doi: 10.1371/journal.pbio.1002352. eCollection 2016 Jan.
6
Tapping into Plant-Microbiome Interactions through the Lens of Multi-Omics Techniques.
Cells. 2022 Oct 17;11(20):3254. doi: 10.3390/cells11203254.
8
Insight into soil nitrogen and phosphorus availability and agricultural sustainability by plant growth-promoting rhizobacteria.
Environ Sci Pollut Res Int. 2022 Jun;29(30):45089-45106. doi: 10.1007/s11356-022-20399-4. Epub 2022 Apr 26.
9
Agricultural Soil Management Practices Differentially Shape the Bacterial and Fungal Microbiome of .
Appl Environ Microbiol. 2021 Mar 1;87(5). doi: 10.1128/AEM.02345-20. Epub 2020 Dec 11.
10
Soil Matrix Determines the Outcome of Interaction Between Mycorrhizal Symbiosis and Biochar for Growth and Nutrition.
Front Microbiol. 2018 Nov 27;9:2862. doi: 10.3389/fmicb.2018.02862. eCollection 2018.

引用本文的文献

1
Microorganisms as Potential Accelerators of Speed Breeding: Mechanisms and Knowledge Gaps.
Plants (Basel). 2025 Aug 23;14(17):2628. doi: 10.3390/plants14172628.
2
Systems Biology Applications in Revealing Plant Defense Mechanisms in Disease Triangle.
Int J Mol Sci. 2025 Jul 29;26(15):7318. doi: 10.3390/ijms26157318.
5
The path effects of a bacterial signal compound on the microbiome of canola.
BMC Plant Biol. 2025 Jul 29;25(1):976. doi: 10.1186/s12870-025-06929-5.
6
Diversity and functional roles of endophytic and rhizospheric microorganisms in L.: implications for bioactive compound synthesis.
Front Microbiol. 2025 Jul 10;16:1618667. doi: 10.3389/fmicb.2025.1618667. eCollection 2025.
8
The chemical interaction between plants and the rhizosphere microbiome.
Trends Plant Sci. 2025 Sep;30(9):1002-1019. doi: 10.1016/j.tplants.2025.06.001. Epub 2025 Jul 1.
10
Early Response of Rhizosphere Microbial Community Network Characteristics to Thinning Intensity in Plantations.
Microorganisms. 2025 Jun 11;13(6):1357. doi: 10.3390/microorganisms13061357.

本文引用的文献

1
Protozoa and plant growth: the microbial loop in soil revisited.
New Phytol. 2004 Jun;162(3):617-631. doi: 10.1111/j.1469-8137.2004.01066.x.
2
Plant and mycorrhizal regulation of rhizodeposition.
New Phytol. 2004 Sep;163(3):459-480. doi: 10.1111/j.1469-8137.2004.01130.x.
4
Research priorities for harnessing plant microbiomes in sustainable agriculture.
PLoS Biol. 2017 Mar 28;15(3):e2001793. doi: 10.1371/journal.pbio.2001793. eCollection 2017 Mar.
5
Small molecules below-ground: the role of specialized metabolites in the rhizosphere.
Plant J. 2017 May;90(4):788-807. doi: 10.1111/tpj.13543. Epub 2017 Apr 22.
6
Root microbiota drive direct integration of phosphate stress and immunity.
Nature. 2017 Mar 23;543(7646):513-518. doi: 10.1038/nature21417. Epub 2017 Mar 15.
7
Abiotic Stress Responses and Microbe-Mediated Mitigation in Plants: The Omics Strategies.
Front Plant Sci. 2017 Feb 9;8:172. doi: 10.3389/fpls.2017.00172. eCollection 2017.
8
Root nodule symbiosis in Lotus japonicus drives the establishment of distinctive rhizosphere, root, and nodule bacterial communities.
Proc Natl Acad Sci U S A. 2016 Dec 6;113(49):E7996-E8005. doi: 10.1073/pnas.1616564113. Epub 2016 Nov 18.
9
Biology and evolution of arbuscular mycorrhizal symbiosis in the light of genomics.
New Phytol. 2017 Jan;213(2):531-536. doi: 10.1111/nph.14263. Epub 2016 Oct 25.
10
Microbiome and Exudates of the Root and Rhizosphere of Brachypodium distachyon, a Model for Wheat.
PLoS One. 2016 Oct 11;11(10):e0164533. doi: 10.1371/journal.pone.0164533. eCollection 2016.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验