Fulcher Ben D
School of Physics, The University of Sydney, Sydney, NSW 2006, Australia.
J Exp Neurosci. 2019 Jul 9;13:1179069519862047. doi: 10.1177/1179069519862047. eCollection 2019.
The primate cerebral cortex is broadly organized along hierarchical processing streams underpinned by corresponding variation in the brain's microstructure and interareal connectivity patterns. Fulcher et al. recently demonstrated that a similar organization exists in the mouse cortex by combining independent datasets of cytoarchitecture, gene expression, cell densities, and long-range axonal connectivity. Using the T1w:T2w magnetic resonance imaging map as a common spatial reference for data-driven comparison of cortical gradients between mouse and human, we highlighted a common hierarchical expression pattern of numerous brain-related genes, providing new understanding of how systematic structural variation shapes functional specialization in mammalian brains. Reflecting on these findings, here we discuss how open neuroscience datasets, combined with advanced neuroinformatics approaches, will be crucial in the ongoing search for organization principles of brain structure. We explore the promises and challenges of integrative studies and argue that a tighter collaboration between experimental, statistical, and theoretical neuroscientists is needed to drive progress further.
灵长类动物的大脑皮层沿着层次化处理流广泛组织,其基础是大脑微观结构和区域间连接模式的相应变化。富尔彻等人最近通过结合细胞结构、基因表达、细胞密度和长距离轴突连接的独立数据集,证明了小鼠皮层中也存在类似的组织。利用T1w:T2w磁共振成像图作为小鼠和人类皮层梯度数据驱动比较的共同空间参考,我们突出了众多脑相关基因的共同层次表达模式,为系统结构变异如何塑造哺乳动物大脑功能特化提供了新的理解。基于这些发现,我们在此讨论开放神经科学数据集与先进神经信息学方法相结合,在正在进行的寻找脑结构组织原则的过程中将如何至关重要。我们探讨了整合研究的前景和挑战,并认为实验、统计和理论神经科学家之间需要更紧密的合作以推动进一步进展。