Suppr超能文献

2014年1月至2015年4月期间五个不同国家关于脊髓灰质炎的推特对话及英文新闻媒体报道

Twitter Conversations and English News Media Reports on Poliomyelitis in Five Different Countries, January 2014 to April 2015.

作者信息

Schaible Braydon J, Snook Kassandra R, Yin Jingjing, Jackson Ashley M, Ahweyevu Jennifer O, Chong Muhling, Tse Zion Tsz Ho, Liang Hai, Fu King-Wa, Fung Isaac Chun-Hai

机构信息

Department of Biostatistics, Epidemiology and Environmental Health Sciences, Jiann-Ping Hsu College of Public Health, Georgia Southern University in Statesboro.

School of Electrical Engineering and Computer Engineering, College of Engineering, University of Georgia, Athens.

出版信息

Perm J. 2019;23. doi: 10.7812/TPP/18-181. Epub 2019 Jul 8.

Abstract

INTRODUCTION

Twitter and media coverage on poliomyelitis help maintain global support for its eradication.

OBJECTIVE

To test our hypothesis that themes of polio-related tweets and media articles would differ by location of interest (hashtag of country name mentioned in the tweet; country name mentioned in media articles) but would be similar to each other (tweets and media articles) for each location of interest.

METHODS

We retrospectively examined a 40% random sample of Twitter data containing the hashtag #polio from January 1, 2014, to April 30, 2015 (N = 79,333), from which we extracted 5 subcorpora each with a co-occurring hashtag #India (n = 5027), #Iraq (n = 1238), #Nigeria (n = 1364), #Pakistan (n = 11,427), and #Syria (n = 2952). We also retrieved and categorized 73 polio-related English-language news stories from within the same timeframe. We assessed the association between polio-related English news themes and the Twitter content. Descriptive analyses and unsupervised machine learning (latent Dirichlet allocation modeling) were conducted on the 5 Twitter subcorpora.

RESULTS

The results of the latent Dirichlet allocation modeling on the specific subcorpora with country co-occurring hashtags showed significant differences between the 5 countries in terms of content. English mass media content focused largely on violence/conflicts and cases of polio, whereas social media focused on eradication and vaccination efforts along with celebrations.

DISCUSSION

Contrary to our hypothesis, our evidence suggests Twitter content differs significantly from English mass media content. Evidence from our study helps inform media monitoring and communications surveillance during global public health crises, such as infectious disease outbreaks, as well as reactions to health promotion campaigns.

摘要

引言

推特和媒体对脊髓灰质炎的报道有助于维持全球对根除脊髓灰质炎的支持。

目的

检验我们的假设,即与脊髓灰质炎相关的推文和媒体文章的主题会因关注地点(推文中提到的国家名称标签;媒体文章中提到的国家名称)而有所不同,但对于每个关注地点,推文和媒体文章之间会彼此相似。

方法

我们回顾性地检查了2014年1月1日至2015年4月30日期间包含标签#脊髓灰质炎的推特数据的40%随机样本(N = 79333),从中提取了5个子语料库,每个子语料库都有共同出现的标签#印度(n = 5027)、#伊拉克(n = 1238)、#尼日利亚(n = 1364)、#巴基斯坦(n = 11427)和#叙利亚(n = 2952)。我们还检索并分类了同一时间段内73篇与脊髓灰质炎相关的英文新闻报道。我们评估了与脊髓灰质炎相关的英文新闻主题和推特内容之间的关联。对5个推特子语料库进行了描述性分析和无监督机器学习(潜在狄利克雷分配建模)。

结果

对带有国家共同出现标签的特定子语料库进行潜在狄利克雷分配建模的结果显示,5个国家在内容方面存在显著差异。英文大众媒体内容主要集中在暴力/冲突和脊髓灰质炎病例上,而社交媒体则侧重于根除和疫苗接种工作以及庆祝活动。

讨论

与我们的假设相反,我们的证据表明推特内容与英文大众媒体内容存在显著差异。我们研究的证据有助于为全球公共卫生危机(如传染病爆发)期间的媒体监测和通信监督以及对健康促进运动的反应提供信息。

相似文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验