Suppr超能文献

葡萄糖代谢的离散变化定义了衰老。

Discrete Changes in Glucose Metabolism Define Aging.

机构信息

UOC Laboratorio Cellule Staminali post-natali e Terapie Cellulari, IRCCS Istituto Giannina Gaslini, Genoa, Italy.

Department of Experimental Medicine, University of Genoa, Genoa, Italy.

出版信息

Sci Rep. 2019 Jul 17;9(1):10347. doi: 10.1038/s41598-019-46749-w.

Abstract

Aging is a physiological process in which multifactorial processes determine a progressive decline. Several alterations contribute to the aging process, including telomere shortening, oxidative stress, deregulated autophagy and epigenetic modifications. In some cases, these alterations are so linked with the aging process that it is possible predict the age of a person on the basis of the modification of one specific pathway, as proposed by Horwath and his aging clock based on DNA methylation. Because the energy metabolism changes are involved in the aging process, in this work, we propose a new aging clock based on the modifications of glucose catabolism. The biochemical analyses were performed on mononuclear cells isolated from peripheral blood, obtained from a healthy population with an age between 5 and 106 years. In particular, we have evaluated the oxidative phosphorylation function and efficiency, the ATP/AMP ratio, the lactate dehydrogenase activity and the malondialdehyde content. Further, based on these biochemical markers, we developed a machine learning-based mathematical model able to predict the age of an individual with a mean absolute error of approximately 9.7 years. This mathematical model represents a new non-invasive tool to evaluate and define the age of individuals and could be used to evaluate the effects of drugs or other treatments on the early aging or the rejuvenation.

摘要

衰老是一个多因素决定的渐进性衰退的生理过程。几种改变导致衰老过程,包括端粒缩短、氧化应激、自噬失调和表观遗传修饰。在某些情况下,这些改变与衰老过程如此相关,以至于可以根据特定途径的修饰来预测一个人的年龄,正如 Horwath 及其基于 DNA 甲基化的衰老时钟所提出的那样。由于能量代谢的改变与衰老过程有关,在这项工作中,我们提出了一种基于葡萄糖分解代谢修饰的新的衰老时钟。生物化学分析是在从 5 至 106 岁的健康人群中分离的外周血单核细胞上进行的。具体来说,我们评估了氧化磷酸化功能和效率、ATP/AMP 比、乳酸脱氢酶活性和丙二醛含量。此外,基于这些生化标志物,我们开发了一种基于机器学习的数学模型,能够以平均绝对误差约 9.7 年的方式预测个体的年龄。该数学模型代表了一种新的非侵入性工具,可用于评估和定义个体的年龄,并可用于评估药物或其他治疗方法对早期衰老或返老还童的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6299/6637183/a74ed0bba060/41598_2019_46749_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验