Suppr超能文献

早期乳腺癌后主要不良心血管事件的多变量预测模型的开发和验证:基于人群的队列研究。

Development and validation of a multivariable prediction model for major adverse cardiovascular events after early stage breast cancer: a population-based cohort study.

机构信息

Department of Medicine, Women's College Hospital Toronto, 76 Grenville St, Room 3444, Toronto, ON M5S 1B2, Canada.

Department of Medicine, Division of Cardiology, Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada.

出版信息

Eur Heart J. 2019 Dec 21;40(48):3913-3920. doi: 10.1093/eurheartj/ehz460.

Abstract

AIMS

Develop a score to predict the risk of major adverse cardiovascular events (MACE) after early stage breast cancer (EBC) to facilitate personalized decision-making about potentially cardiotoxic treatments and interventions to reduce cardiovascular risk.

METHODS AND RESULTS

Using administrative databases, we assembled a cohort of women diagnosed with EBC in Ontario between 2003 and 2014, with follow-up through 2015. Two-thirds of the cohort were used for risk score derivation; the remainder were reserved for its validation. The outcome was a composite of hospitalizations for acute myocardial infarction, unstable angina, transient ischaemic attack, stroke, peripheral vascular disease, heart failure (HF), or cardiovascular death. We developed the score by regressing MACE incidence against candidate predictors in the derivation sample using a Fine-Gray model. Discrimination was assessed in the validation sample using Wolber's c-index for prognostic models with competing risks, while calibration was assessed by comparing predicted and observed MACE incidence. The risk score was derived in 60 294 women and validated in 29 810 women. Age, hypertension, diabetes, ischaemic heart disease, atrial fibrillation, HF, cerebrovascular disease, peripheral vascular disease, chronic obstructive pulmonary disease, and chronic kidney disease were significantly associated with MACE incidence and incorporated into the score. Ten-year MACE incidence was >40-fold higher for patients in the highest score decile compared to the lowest. The c-index was 81.9% (95% confidence interval 80.9-82.9%) at 5 years and 79.8% (78.8-80.8%) at 10 years in the validation cohort, with good agreement between predicted and observed MACE incidence.

CONCLUSION

Cardiovascular prognosis after EBC can be estimated using patients' pre-treatment characteristics.

摘要

目的

开发一种评分系统,以预测早期乳腺癌(EBC)后发生主要不良心血管事件(MACE)的风险,从而为潜在的心脏毒性治疗和降低心血管风险的干预措施提供个体化决策依据。

方法和结果

我们使用行政数据库,汇集了 2003 年至 2014 年期间在安大略省诊断为 EBC 的女性队列,并随访至 2015 年。该队列的三分之二用于风险评分的推导;其余部分保留用于验证。该结局是由急性心肌梗死、不稳定型心绞痛、短暂性脑缺血发作、中风、外周血管疾病、心力衰竭(HF)或心血管死亡的住院事件组成的复合结局。我们通过在推导样本中使用 Fine-Gray 模型将 MACE 发生率与候选预测因素进行回归,从而开发了该评分。在验证样本中,使用 Wolber 的 c 指数评估具有竞争风险的预后模型的区分度,同时通过比较预测和观察到的 MACE 发生率评估校准度。该风险评分在 60294 名女性中推导得出,并在 29810 名女性中验证。年龄、高血压、糖尿病、缺血性心脏病、心房颤动、HF、脑血管疾病、外周血管疾病、慢性阻塞性肺疾病和慢性肾脏病与 MACE 发生率显著相关,并被纳入评分。与最低评分组相比,最高评分组患者的 10 年 MACE 发生率高出 40 倍以上。在验证队列中,5 年时的 c 指数为 81.9%(95%置信区间 80.9-82.9%),10 年时为 79.8%(78.8-80.8%),预测与观察到的 MACE 发生率之间具有良好的一致性。

结论

可以使用患者治疗前的特征来估计 EBC 后的心血管预后。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验