Suppr超能文献

用于制造基于生物膜的功能性生物活性材料的3D打印技术

3D Printing for the Fabrication of Biofilm-Based Functional Living Materials.

作者信息

Balasubramanian Srikkanth, Aubin-Tam Marie-Eve, Meyer Anne S

机构信息

Department of Bionanoscience & Kavli Institute of Nanoscience , Delft University of Technology , 2628 CD Delft , The Netherlands.

Department of Biology , University of Rochester , Rochester , New York 14627 , United States.

出版信息

ACS Synth Biol. 2019 Jul 19;8(7):1564-1567. doi: 10.1021/acssynbio.9b00192.

Abstract

Bacterial biofilms are three-dimensional networks of cells entangled in a self-generated extracellular polymeric matrix composed of proteins, lipids, polysaccharides, and nucleic acids. Biofilms can establish themselves on virtually any accessible surface and lead to varying impacts ranging from infectious diseases to degradation of toxic chemicals. Biofilms exhibit high mechanical stiffness and are inherently tolerant to adverse conditions including the presence of antibiotics, pollutants, detergents, high temperature, changes in pH, etc. These features make biofilms resilient, which is beneficial for applications in dynamic environments such as bioleaching, bioremediation, materials production, and wastewater purification. We have recently described an easy and cost-effective method for 3D printing of bacteria and have extended this technology for 3D printing of genetically engineered biofilms. Our 3D printing platform exploits simple alginate chemistry for printing of a bacteria-alginate bioink mixture onto calcium-containing agar surfaces, resulting in the formation of bacteria-encapsulating hydrogels with varying geometries. Bacteria in these hydrogels remain intact, spatially patterned, and viable for several days. Printing of engineered bacteria to produce inducible biofilms leads to formation of multilayered three-dimensional structures that can tolerate harsh chemical treatments. Synthetic biology and material science approaches provide the opportunity to append a wide range of useful functionalities to these 3D-printed biofilms. In this article, we describe the wide range of future applications possible for applying functional 3D-printed biofilms to the construction of living biofilm-derived materials in a large-scale and environmentally stable manner.

摘要

细菌生物膜是由蛋白质、脂质、多糖和核酸组成的自我生成的细胞外聚合物基质中相互缠绕的细胞三维网络。生物膜几乎可以在任何可接触的表面上形成,并导致从传染病到有毒化学物质降解等各种不同的影响。生物膜具有高机械刚度,并且对包括抗生素、污染物、洗涤剂、高温、pH值变化等在内的不利条件具有内在耐受性。这些特性使生物膜具有弹性,这对于生物浸出、生物修复、材料生产和废水净化等动态环境中的应用是有益的。我们最近描述了一种简单且经济高效的细菌3D打印方法,并将该技术扩展到了基因工程生物膜的3D打印。我们的3D打印平台利用简单的藻酸盐化学方法,将细菌-藻酸盐生物墨水混合物打印到含钙琼脂表面,从而形成具有不同几何形状的包封细菌的水凝胶。这些水凝胶中的细菌保持完整、空间排列有序且能存活数天。打印工程细菌以产生可诱导生物膜会导致形成能够耐受苛刻化学处理的多层三维结构。合成生物学和材料科学方法为给这些3D打印生物膜附加广泛的有用功能提供了机会。在本文中,我们描述了将功能性3D打印生物膜大规模且环境稳定地应用于构建基于生物膜的活性材料的各种未来可能应用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验