Depto. Química-Universidad Nacional del Sur, Bahía Blanca 8000 Argentina.
NMR and Structure Analysis, Department of Organic and Macromolecular Chemistry, Ghent University, 9000 Ghent, Belgium.
Molecules. 2019 Jul 9;24(13):2508. doi: 10.3390/molecules24132508.
Transcription factors are proteins lying at the endpoint of signaling pathways that control the complex process of DNA transcription. Typically, they are structurally disordered in the inactive state, but in response to an external stimulus, like a suitable ligand, they change their conformation, thereby activating DNA transcription in a spatiotemporal fashion. The observed disorder or fuzziness is functionally beneficial because it can add adaptability, versatility, and reversibility to the interaction. In this context, mimetics of the basic region of the GCN4 transcription factor (Tf) and their interaction with dsDNA sequences would be suitable models to explore the concept of conformational fuzziness experimentally. Herein, we present the first example of a system that mimics the DNA sequence-specific recognition by the GCN4 Tf through the formation of a non- covalent tetra-component complex: peptide-azoβ-CyD(dimer)-peptide-DNA. The non-covalent complex is constructed on the one hand by a 30 amino acid peptide corresponding to the basic region of GCN4 and functionalized with an adamantane moiety, and on the other hand an allosteric receptor, the azoCyDdimer, that has an azobenzene linker connecting two β-cyclodextrin units. The azoCyDdimer responds to light stimulus, existing as two photo-states: the first thermodynamically stable with an E:Z isomer ratio of 95:5 and the second obtained after irradiation with ultraviolet light, resulting in a photostationary state with a 60:40 E:Z ratio. Through electrophoretic shift assays and circular dichroism spectroscopy, we demonstrate that the E isomer is responsible for dimerization and recognition. The formation of the non-covalent tetra component complex occurs in the presence of the GCN4 cognate dsDNA sequence ('5-..ATGA cg TCAT..-3') but not with ('5-..ATGA c TCAT..-3') that differs in only one spacing nucleotide. Thus, we demonstrated that the tetra-component complex is formed in a specific manner that depends on the geometry of the ligand, the peptide length, and the ds DNA sequence. We hypothesized that the mechanism of interaction is sequential, and it can be described by the polymorphism model of static fuzziness. We argue that chemically modified peptides of the GCN4 Tf are suitable minimalist experimental models to investigate conformational fuzziness in protein-DNA interactions.
转录因子是位于信号通路终点的蛋白质,它们控制着 DNA 转录的复杂过程。通常情况下,它们在非活性状态下结构无序,但在受到外部刺激(如合适的配体)后,它们会改变构象,从而以时空方式激活 DNA 转录。观察到的无序或模糊性在功能上是有益的,因为它可以为相互作用增加适应性、多功能性和可逆性。在这种情况下,GCN4 转录因子(Tf)基本区域的类似物及其与 dsDNA 序列的相互作用将是探索构象模糊性的实验概念的合适模型。在此,我们提出了第一个通过形成非共价四组分复合物模拟 GCN4 Tf 对 DNA 序列特异性识别的系统示例:肽-偶氮-β-CyD(二聚体)-肽-DNA。非共价复合物一方面由对应于 GCN4 基本区域的 30 个氨基酸肽组成,并官能化有金刚烷部分,另一方面由别构受体偶氮 CyD 二聚体组成,该受体具有连接两个β-环糊精单元的偶氮苯连接物。偶氮 CyD 二聚体对光刺激有响应,存在两种光态:第一种热力学稳定,E:Z 异构体比例为 95:5,第二种在紫外光照射后获得,形成 E:Z 比例为 60:40 的光稳态。通过电泳迁移率变动分析和圆二色性光谱,我们证明 E 异构体负责二聚体和识别。非共价四组分复合物的形成发生在 GCN4 同源 dsDNA 序列('5-..ATGA cg TCAT..-3')存在的情况下,但不在仅一个间隔核苷酸不同的序列('5-..ATGA c TCAT..-3')存在的情况下。因此,我们证明了四组分复合物以依赖于配体几何形状、肽长度和 dsDNA 序列的特定方式形成。我们假设相互作用的机制是顺序的,可以用静态模糊的多态性模型来描述。我们认为,GCN4 Tf 的化学修饰肽是研究蛋白质-DNA 相互作用中构象模糊性的合适最小实验模型。