Suppr超能文献

小分子离子对嵌段聚两性电解质自凝聚现象的影响

Small ion effects on self-coacervation phenomena in block polyampholytes.

作者信息

Danielsen Scott P O, McCarty James, Shea Joan-Emma, Delaney Kris T, Fredrickson Glenn H

机构信息

Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA.

Materials Research Laboratory, University of California, Santa Barbara, California 93106, USA.

出版信息

J Chem Phys. 2019 Jul 21;151(3):034904. doi: 10.1063/1.5109045.

Abstract

Self-coacervation is a phenomenon in which a solution of polyampholytes spontaneously phase separates into a dense liquid coacervate phase, rich in the polyampholyte, coexisting with a dilute supernatant phase. Such coacervation results in the formation of membraneless organelles in vivo and has further been applied industrially as synthetic encapsulants and coatings. It has been suggested that coacervation is primarily driven by the entropy gain from releasing counter-ions upon complexation. Using fully fluctuating field-theoretic simulations employing complex Langevin sampling and complementary molecular dynamics simulations, we have determined that the small ions contribute only weakly to the self-coacervation behavior of charge-symmetric block polyampholytes in solution. Salt partitioning between the supernatant and coacervate is also found to be negligible in the weak-binding regime at low electrostatic strengths. Asymmetries in charge distribution along the polyampholytes can cause net-charges that lead to "tadpole" configurations in dilute solution and the suppression of phase separation at low salt content. The field and particle-based simulation results are compared with analytical predictions from the random phase approximation (RPA) and postulated scaling relationships. The qualitative trends are mostly captured by the RPA, but the approximation fails at low concentration.

摘要

自凝聚是一种现象,其中聚两性电解质溶液会自发地相分离成富含聚两性电解质的致密液体凝聚相,并与稀释的上清液相共存。这种凝聚在体内会导致无膜细胞器的形成,并且在工业上进一步用作合成封装剂和涂层。有人提出,凝聚主要是由络合时释放抗衡离子所带来的熵增驱动的。通过使用采用复朗之万采样的全波动场论模拟和互补的分子动力学模拟,我们确定小离子对溶液中电荷对称嵌段聚两性电解质的自凝聚行为贡献微弱。在低静电强度的弱结合 regime 中,上清液和凝聚相之间的盐分配也可忽略不计。沿聚两性电解质的电荷分布不对称会导致净电荷,从而在稀溶液中形成“蝌蚪”构型,并在低盐含量下抑制相分离。将基于场和粒子的模拟结果与随机相位近似(RPA)的分析预测和假设的标度关系进行了比较。定性趋势大多由 RPA 捕捉到,但该近似在低浓度时失效。

相似文献

2
Molecular design of self-coacervation phenomena in block polyampholytes.嵌段聚两性离子自凝聚现象的分子设计。
Proc Natl Acad Sci U S A. 2019 Apr 23;116(17):8224-8232. doi: 10.1073/pnas.1900435116. Epub 2019 Apr 4.
4
Transfer Matrix Model of pH Effects in Polymeric Complex Coacervation.聚合物复合凝聚中 pH 效应的传递矩阵模型。
J Phys Chem B. 2021 Aug 12;125(31):8965-8980. doi: 10.1021/acs.jpcb.1c03065. Epub 2021 Jul 30.
8
Complexation Behavior of Polyelectrolytes and Polyampholytes.聚电解质和聚两性电解质的络合行为。
J Phys Chem B. 2017 Aug 24;121(33):7987-7998. doi: 10.1021/acs.jpcb.7b04582. Epub 2017 Aug 9.

引用本文的文献

2
Quantitative Equivalence and Performance Comparison of Particle and Field-Theoretic Simulations.粒子模拟与场论模拟的定量等效性及性能比较
Macromolecules. 2024 Nov 12;57(22):10870-10884. doi: 10.1021/acs.macromol.4c02034. eCollection 2024 Nov 26.
4
Scattering evidence of positional charge correlations in polyelectrolyte complexes.聚电解质复合物中位置电荷相关性的零散证据。
Proc Natl Acad Sci U S A. 2023 Aug 8;120(32):e2302151120. doi: 10.1073/pnas.2302151120. Epub 2023 Jul 31.
6
Ion Pairing and the Structure of Gel Coacervates.离子配对与凝胶凝聚层的结构
Macromolecules. 2020 Nov 10;53(21):9420-9442. doi: 10.1021/acs.macromol.0c01360. Epub 2020 Oct 30.
10
Multivalent ions and biomolecules: Attempting a comprehensive perspective.多价离子和生物分子:尝试全面透视。
Chemphyschem. 2020 Aug 18;21(16):1742-1767. doi: 10.1002/cphc.202000162. Epub 2020 Jul 20.

本文引用的文献

2
Protein Encapsulation via Polypeptide Complex Coacervation.通过多肽复合凝聚进行蛋白质包封
ACS Macro Lett. 2014 Oct 21;3(10):1088-1091. doi: 10.1021/mz500529v. Epub 2014 Oct 9.
4
Designing Electrostatic Interactions via Polyelectrolyte Monomer Sequence.通过聚电解质单体序列设计静电相互作用。
ACS Cent Sci. 2019 Apr 24;5(4):709-718. doi: 10.1021/acscentsci.9b00087. Epub 2019 Apr 5.
6
Molecular design of self-coacervation phenomena in block polyampholytes.嵌段聚两性离子自凝聚现象的分子设计。
Proc Natl Acad Sci U S A. 2019 Apr 23;116(17):8224-8232. doi: 10.1073/pnas.1900435116. Epub 2019 Apr 4.
8
Complete Phase Diagram for Liquid-Liquid Phase Separation of Intrinsically Disordered Proteins.内在无序蛋白质液-液相分离的完整相图
J Phys Chem Lett. 2019 Apr 18;10(8):1644-1652. doi: 10.1021/acs.jpclett.9b00099. Epub 2019 Mar 27.
9
Structure of Liquid Coacervates formed by Oppositely Charged Polyelectrolytes.由带相反电荷的聚电解质形成的液体凝聚层的结构。
Macromolecules. 2018 Dec 11;51(23):9572-9588. doi: 10.1021/acs.macromol.8b02059. Epub 2018 Nov 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验