Suppr超能文献

通过最小模型研究蛋白质-RNA 混合物相分离的热力学和动力学。

Thermodynamics and kinetics of phase separation of protein-RNA mixtures by a minimal model.

机构信息

Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, United Kingdom; Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom; Department of Genetics, University of Cambridge, Cambridge, United Kingdom.

Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom.

出版信息

Biophys J. 2021 Apr 6;120(7):1219-1230. doi: 10.1016/j.bpj.2021.01.031. Epub 2021 Feb 9.

Abstract

Intracellular liquid-liquid phase separation enables the formation of biomolecular condensates, such as ribonucleoprotein granules, which play a crucial role in the spatiotemporal organization of biomolecules (e.g., proteins and RNAs). Here, we introduce a patchy-particle polymer model to investigate liquid-liquid phase separation of protein-RNA mixtures. We demonstrate that at low to moderate concentrations, RNA enhances the stability of RNA-binding protein condensates because it increases the molecular connectivity of the condensed-liquid phase. Importantly, we find that RNA can also accelerate the nucleation stage of phase separation. Additionally, we assess how the capacity of RNA to increase the stability of condensates is modulated by the relative protein-protein/protein-RNA binding strengths. We find that phase separation and multiphase organization of multicomponent condensates is favored when the RNA binds with higher affinity to the lower-valency proteins in the mixture than to the cognate higher-valency proteins. Collectively, our results shed light on the roles of RNA in ribonucleoprotein granule formation and the internal structuring of stress granules.

摘要

细胞内液-液相分离使生物分子凝聚物的形成成为可能,例如核糖核蛋白颗粒,其在生物分子(例如蛋白质和 RNA)的时空组织中起着至关重要的作用。在这里,我们引入了一个斑粒子聚合物模型来研究蛋白质-RNA 混合物的液-液相分离。我们证明,在低至中等浓度下,RNA 会通过增加凝聚液相的分子连通性来增强 RNA 结合蛋白凝聚物的稳定性。重要的是,我们发现 RNA 还可以加速相分离的成核阶段。此外,我们评估了 RNA 增加凝聚物稳定性的能力如何受到相对蛋白质-蛋白质/蛋白质-RNA 结合强度的调节。我们发现,当 RNA 与混合物中低价蛋白质的结合亲和力高于与其同源高价蛋白质的结合亲和力时,相分离和多相凝聚体的多相组织更有利于形成。总的来说,我们的结果阐明了 RNA 在核糖核蛋白颗粒形成和应激颗粒内部结构中的作用。

相似文献

1
Thermodynamics and kinetics of phase separation of protein-RNA mixtures by a minimal model.
Biophys J. 2021 Apr 6;120(7):1219-1230. doi: 10.1016/j.bpj.2021.01.031. Epub 2021 Feb 9.
3
Surfactants or scaffolds? RNAs of varying lengths control the thermodynamic stability of condensates differently.
Biophys J. 2023 Jul 25;122(14):2973-2987. doi: 10.1016/j.bpj.2023.03.006. Epub 2023 Mar 6.
4
Liquid network connectivity regulates the stability and composition of biomolecular condensates with many components.
Proc Natl Acad Sci U S A. 2020 Jun 16;117(24):13238-13247. doi: 10.1073/pnas.1917569117. Epub 2020 Jun 1.
5
Composition-dependent thermodynamics of intracellular phase separation.
Nature. 2020 May;581(7807):209-214. doi: 10.1038/s41586-020-2256-2. Epub 2020 May 6.
6
Aging can transform single-component protein condensates into multiphase architectures.
Proc Natl Acad Sci U S A. 2022 Jun 28;119(26):e2119800119. doi: 10.1073/pnas.2119800119. Epub 2022 Jun 21.
7
RNA length has a non-trivial effect in the stability of biomolecular condensates formed by RNA-binding proteins.
PLoS Comput Biol. 2022 Feb 2;18(2):e1009810. doi: 10.1371/journal.pcbi.1009810. eCollection 2022 Feb.
9
Using quantitative reconstitution to investigate multicomponent condensates.
RNA. 2022 Jan;28(1):27-35. doi: 10.1261/rna.079008.121. Epub 2021 Nov 12.
10
Nucleation landscape of biomolecular condensates.
Nature. 2021 Nov;599(7885):503-506. doi: 10.1038/s41586-021-03905-5. Epub 2021 Sep 22.

引用本文的文献

2
Transcription-templated assembly of the nucleolus in the embryo.
Proc Natl Acad Sci U S A. 2025 Jun 3;122(22):e2411964122. doi: 10.1073/pnas.2411964122. Epub 2025 May 30.
3
Evolution of the PE_PGRS Proteins of Mycobacteria: Are All Equal or Are Some More Equal than Others?
Biology (Basel). 2025 Feb 28;14(3):247. doi: 10.3390/biology14030247.
4
Driving Forces of RNA Condensation Revealed through Coarse-Grained Modeling with Explicit Mg.
bioRxiv. 2025 Feb 28:2024.11.17.624048. doi: 10.1101/2024.11.17.624048.
5
Nucleoprotein Phase-Separation Affinities Revealed via Atomistic Simulations of Short Peptide and RNA Fragments.
J Phys Chem Lett. 2024 Oct 31;15(43):10811-10817. doi: 10.1021/acs.jpclett.4c02654. Epub 2024 Oct 21.
7
Exploring protein-mediated compaction of DNA by coarse-grained simulations and unsupervised learning.
Biophys J. 2024 Sep 17;123(18):3231-3241. doi: 10.1016/j.bpj.2024.07.023. Epub 2024 Jul 23.
8
Transcription templated assembly of the nucleolus in the embryo.
bioRxiv. 2024 Jun 6:2024.06.06.597440. doi: 10.1101/2024.06.06.597440.
9
Fundamental Aspects of Phase-Separated Biomolecular Condensates.
Chem Rev. 2024 Jul 10;124(13):8550-8595. doi: 10.1021/acs.chemrev.4c00138. Epub 2024 Jun 17.
10
Asymmetric oligomerization state and sequence patterning can tune multiphase condensate miscibility.
Nat Chem. 2024 Jul;16(7):1073-1082. doi: 10.1038/s41557-024-01456-6. Epub 2024 Feb 21.

本文引用的文献

3
FUS and TDP-43 Phases in Health and Disease.
Trends Biochem Sci. 2021 Jul;46(7):550-563. doi: 10.1016/j.tibs.2020.12.005. Epub 2021 Jan 11.
4
Sequence dependent phase separation of protein-polynucleotide mixtures elucidated using molecular simulations.
Nucleic Acids Res. 2020 Dec 16;48(22):12593-12603. doi: 10.1093/nar/gkaa1099.
5
Comparative roles of charge, , and hydrophobic interactions in sequence-dependent phase separation of intrinsically disordered proteins.
Proc Natl Acad Sci U S A. 2020 Nov 17;117(46):28795-28805. doi: 10.1073/pnas.2008122117. Epub 2020 Nov 2.
7
Designer protein assemblies with tunable phase diagrams in living cells.
Nat Chem Biol. 2020 Sep;16(9):939-945. doi: 10.1038/s41589-020-0576-z. Epub 2020 Jul 13.
8
Liquid network connectivity regulates the stability and composition of biomolecular condensates with many components.
Proc Natl Acad Sci U S A. 2020 Jun 16;117(24):13238-13247. doi: 10.1073/pnas.1917569117. Epub 2020 Jun 1.
9
Competing Protein-RNA Interaction Networks Control Multiphase Intracellular Organization.
Cell. 2020 Apr 16;181(2):306-324.e28. doi: 10.1016/j.cell.2020.03.050.
10
Finite-size scaling analysis of protein droplet formation.
Phys Rev E. 2020 Feb;101(2-1):022413. doi: 10.1103/PhysRevE.101.022413.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验