Suppr超能文献

静息态和多种任务态下全脑功能连接的无状态模式可预测稳定的个体特质。

State-unspecific patterns of whole-brain functional connectivity from resting and multiple task states predict stable individual traits.

机构信息

ATR Brain Information Communication Research Laboratory Group, Kyoto, Japan; Department of Psychiatry, Oxford Centre for Human Brain Activity, University of Oxford, Oxford, UK; Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Graduate School of Information Science, Nara Institute of Science and Technology, Nara, 630-0192, Japan; Japan Society for the Promotion of Science, Tokyo, 102-0083, Japan.

RIKEN Center for Advanced Intelligence Project, Tokyo, 103-0027, Japan; ATR Brain Information Communication Research Laboratory Group, Kyoto, Japan.

出版信息

Neuroimage. 2019 Nov 1;201:116036. doi: 10.1016/j.neuroimage.2019.116036. Epub 2019 Jul 18.

Abstract

An increasing number of functional magnetic resonance imaging (fMRI) studies have revealed potential neural substrates of individual differences in diverse types of brain function and dysfunction. Although most previous studies have inherently focused on state-specific characterizations of brain networks and their functions, several recent studies reported on the potential state-unspecific nature of functional brain networks, such as global similarities across different experimental conditions or states, including both task and resting states. However, no previous studies have carried out direct, systematic characterizations of state-unspecific brain networks, or their functional implications. Here, we quantitatively identified several modes of state-unspecific individual variations in whole-brain functional connectivity patterns, called "Common Neural Modes" (CNMs), from a large-scale fMRI database including eight task/resting states. Furthermore, we tested how CNMs accounted for variability in individual cognitive measures. The results revealed that three CNMs were robustly extracted under various dimensions of features used. Each of these CNMs was preferentially correlated with different aspects of representative cognitive measures, reflecting stable individual traits. Importantly, the association between CNMs and cognitive measures emerged from brain connectivity data alone ("unsupervised"), whereas previous related studies have explicitly used both connectivity and cognitive measures to build their prediction models ("supervised"). The three CNMs were also able to predict several life outcomes, including income and life satisfaction, and achieved the highest level of performance when combined with a conventional cognitive measure. Our findings highlight the importance of state-unspecific brain networks in characterizing fundamental individual variation.

摘要

越来越多的功能磁共振成像(fMRI)研究揭示了不同类型的大脑功能和功能障碍的个体差异的潜在神经基础。尽管大多数先前的研究本质上都集中在特定状态的大脑网络及其功能的特征描述上,但最近的几项研究报告了功能大脑网络潜在的非特定状态性质,例如不同实验条件或状态(包括任务状态和静息状态)之间的全局相似性。然而,以前的研究没有对非特定状态的大脑网络进行直接的、系统的特征描述,也没有对其功能意义进行研究。在这里,我们从一个包括八个任务/静息状态的大型 fMRI 数据库中,定量地识别了全脑功能连接模式中的几种非特定状态的个体变异模式,称为“通用神经模式”(CNM)。此外,我们测试了 CNM 如何解释个体认知测量的变异性。结果表明,在使用的各种特征维度下,稳健地提取了三个 CNM。这三个 CNM 中的每一个都与不同方面的代表性认知测量指标优先相关,反映了稳定的个体特征。重要的是,CNM 与认知测量指标之间的关联仅来自于大脑连接数据(“无监督”),而以前的相关研究已经明确地使用了连接和认知测量指标来构建他们的预测模型(“监督”)。这三个 CNM 还能够预测几个生活结果,包括收入和生活满意度,并且当与传统的认知测量指标结合使用时,达到了最高的性能水平。我们的研究结果强调了非特定状态的大脑网络在描述基本个体变异性方面的重要性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验