Suppr超能文献

基于大脑的行为预测的挑战与展望。

The challenges and prospects of brain-based prediction of behaviour.

机构信息

Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Center Jülich, Jülich, Germany.

Institute for Systems Neuroscience, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany.

出版信息

Nat Hum Behav. 2023 Aug;7(8):1255-1264. doi: 10.1038/s41562-023-01670-1. Epub 2023 Jul 31.

Abstract

Relating individual brain patterns to behaviour is fundamental in system neuroscience. Recently, the predictive modelling approach has become increasingly popular, largely due to the recent availability of large open datasets and access to computational resources. This means that we can use machine learning models and interindividual differences at the brain level represented by neuroimaging features to predict interindividual differences in behavioural measures. By doing so, we could identify biomarkers and neural correlates in a data-driven fashion. Nevertheless, this budding field of neuroimaging-based predictive modelling is facing issues that may limit its potential applications. Here we review these existing challenges, as well as those that we anticipate as the field develops. We focus on the impacts of these challenges on brain-based predictions. We suggest potential solutions to address the resolvable challenges, while keeping in mind that some general and conceptual limitations may also underlie the predictive modelling approach.

摘要

将个体的大脑模式与行为联系起来是系统神经科学的基础。最近,预测建模方法越来越受欢迎,这在很大程度上要归功于大型开放数据集的可用性以及对计算资源的访问。这意味着我们可以使用机器学习模型和神经影像学特征代表的个体间差异来预测行为测量中的个体间差异。通过这样做,我们可以以数据驱动的方式识别生物标志物和神经相关性。然而,基于神经影像学的预测建模这一新兴领域正面临着可能限制其潜在应用的问题。在这里,我们回顾了这些现有的挑战,以及随着该领域的发展我们预计会面临的挑战。我们专注于这些挑战对基于大脑的预测的影响。我们提出了解决可解决的挑战的潜在解决方案,同时牢记预测建模方法可能也存在一些普遍和概念上的局限性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验