Department of Chemistry , University of California Davis , 1 Shields Avenue , Davis California 95616 , United States.
Department of Chemistry , American University of Beirut , Beirut , Lebanon.
Acc Chem Res. 2019 Aug 20;52(8):2256-2265. doi: 10.1021/acs.accounts.9b00220. Epub 2019 Jul 22.
Indazoles are an important class of nitrogen heterocycles because of their excellent performance in biologically relevant applications, such as in chemical biology and medicinal chemistry. In these applications, convenient synthesis using commercially available and diverse building blocks is highly desirable. Within this broad class, 2-indazoles are relatively underexploited when compared to 1-indazole, perhaps because of regioselectivity issues associated with the synthesis of 2-indazoles. This Account describes our unfolding of the synthetic utility of the Davis-Beirut reaction (DBR) for the construction of 2-indazoles and their derivatives; parallel unfoldings of mechanistic models for these interrelated N-N bond forming reactions are also summarized. The Davis-Beirut reaction is a robust method that exploits the diverse chemistries of a key nitroso imine or nitroso benzaldehyde intermediate generated in situ under redox neutral conditions. The resulting N-N bond-forming heterocyclization between nucleophilic and electrophilic nitrogens can be leveraged for the synthesis of multiple classes of indazoles and their derivatives, such as simple or fused indazolones, thiazolo-indazoles, 3-alkoxy-2-indazoles, 2-indazole -oxides, and 2-indazoles with various substitutions on the ring system or the nitrogens. These diverse products can all be synthesized under alkaline conditions and the various strategies for accessing these heterocycles are discussed. Alternatively, we have also developed methods involving mild photochemical conditions for the nitrobenzyl → -nitro → nitroso imine sequence. Solvent consideration is especially important for modulating the chemistry of the reactive intermediates in these reactions; the presence of water is critically important in some cases, but water's beneficial effect has a ceiling because of the alternative reaction pathways it enables. Fused 2-indazoles readily undergo ring opening reactions to give indazolones when treated with nucleophiles or electrophiles. Furthermore, palladium-catalyzed cross coupling, the Sonagashira reaction, EDC amide coupling, 1,3-dipolar cycloadditions with nitrile oxides, copper-catalyzed alkyne-azide cycloadditions (click reaction), as well as copper-free click reactions, can all be used late-stage to modify 2-indazoles and indazolones. The continued development and applications of the Davis-Beirut reaction has provided many insights for taming the reactivity of highly reactive nitro and nitroso groups, which still has a plethora of underexplored chemistries and challenges. For example, there is currently a limited number of nonfused 2-indazole examples containing an aryl substitution at nitrogen. This is caused by relatively slow N-N bond formation between -aryl imine and nitroso reactants, which allows water to add to the key nitroso imine intermediate causing imine bond cleavage to be a competitive reaction pathway rather than proceeding through the desired N-N bond-forming heterocyclization.
吲唑是一类重要的含氮杂环化合物,因为它们在生物相关应用中表现出色,例如在化学生物学和药物化学中。在这些应用中,使用商业可得的和多样化的构建块进行方便的合成是非常理想的。在这个广泛的类别中,2-吲唑的应用相对较少,与 1-吲唑相比,这可能是由于与 2-吲唑的合成相关的区域选择性问题。本综述描述了我们对 Davis-Beirut 反应 (DBR) 在构建 2-吲唑及其衍生物中的合成用途的不断探索;也总结了这些相关的 N-N 键形成反应的机械模型的平行展开。Davis-Beirut 反应是一种强大的方法,它利用了关键的亚硝基亚胺或亚硝基苯甲醛中间体在氧化还原中性条件下原位生成的多种化学性质。亲核和亲电氮之间形成的 N-N 键的杂环化可以用于合成多种吲唑及其衍生物,例如简单或稠合的吲唑酮、噻唑并吲唑、3-烷氧基-2-吲唑、2-吲唑氧化物和环系统或氮上具有各种取代基的 2-吲唑。这些不同的产物都可以在碱性条件下合成,并且讨论了获得这些杂环的各种策略。或者,我们还开发了涉及温和光化学条件的方法,用于从硝基苄基到 -硝基到亚硝基亚胺的序列。溶剂的考虑对于调节这些反应中反应性中间体的化学性质非常重要;在某些情况下,水的存在是至关重要的,但由于它开启了替代的反应途径,水的有益效果是有限的。当用亲核试剂或亲电试剂处理时,稠合的 2-吲唑容易发生开环反应,生成吲唑酮。此外,钯催化的交叉偶联、Sonagashira 反应、EDC 酰胺偶联、与腈氧化物的 1,3-偶极环加成、铜催化的炔烃-叠氮环加成(点击反应)以及无铜点击反应,都可以在后期用于修饰 2-吲唑和吲唑酮。Davis-Beirut 反应的不断发展和应用为驯服高度反应性的硝基和亚硝基基团的反应性提供了许多见解,这些基团仍然有大量未被探索的化学性质和挑战。例如,目前含有氮取代基的非稠合 2-吲唑的例子数量有限。这是由于 -芳基亚胺和亚硝基反应物之间相对较慢的 N-N 键形成,这允许水添加到关键的亚硝基亚胺中间体中,导致亚胺键断裂成为竞争性反应途径,而不是通过所需的 N-N 键形成杂环化进行。