IEEE Trans Biomed Eng. 2020 Apr;67(4):1105-1113. doi: 10.1109/TBME.2019.2929745. Epub 2019 Jul 18.
This paper proposes a novel device-to-device transfer-learning algorithm for reducing the calibration cost in a steady-state visual evoked potential (SSVEP)-based brain-computer interface (BCI) speller by leveraging electroencephalographic (EEG) data previously acquired by different EEG systems.
The transferring is done by projecting the scalp-channel EEG signals onto a shared latent domain across devices. Three spatial filtering techniques, including channel averaging, canonical correlation analysis (CCA), and task-related component analysis (TRCA), were employed to extract the shared responses from different devices. The transferred data were integrated into a template-matching-based algorithm to detect SSVEPs. To evaluate its transferability, this paper conducted two sessions of simulated online BCI experiments with ten subjects using 40 visual stimuli modulated by joint frequency-phase coding method. In each session, two different EEG devices were used: first, the Quick-30 system (Cognionics, Inc.) with dry electrodes, and second, the ActiveTwo system (BioSemi, Inc.) with wet electrodes.
The proposed method with CCA- and TRCA-based spatial filters achieved significantly higher classification accuracy compared with the calibration-free standard CCA-based method.
This paper validated the feasibility and effectiveness of the proposed method in implementing calibration-free SSVEP-based BCIs.
The proposed method has great potentials to enhance practicability and usability of real-world SSVEP-based BCI applications by leveraging user-specific data recorded in previous sessions even with different EEG systems and montages.
本研究提出了一种新颖的设备间迁移学习算法,旨在降低基于稳态视觉诱发电位(SSVEP)的脑机接口(BCI)拼写器的校准成本,方法是利用先前从不同 EEG 系统获得的脑电图(EEG)数据。
通过将头皮通道 EEG 信号投影到设备间共享的潜在域上来进行转移。采用三种空间滤波技术,包括通道平均、典型相关分析(CCA)和任务相关成分分析(TRCA),从不同设备中提取共享响应。转移的数据被整合到基于模板匹配的算法中,以检测 SSVEPs。为了评估其可转移性,本文在两个会话中使用联合频相编码调制的 40 个视觉刺激,对十个受试者进行了模拟在线 BCI 实验。在每个会话中,使用两种不同的 EEG 设备:首先是带有干电极的 Quick-30 系统(Cognionics,Inc.),其次是带有湿电极的 ActiveTwo 系统(BioSemi,Inc.)。
与无校准标准 CCA 方法相比,基于 CCA 和 TRCA 的空间滤波器的提出方法实现了更高的分类准确性。
本文验证了该方法在实施无校准 SSVEP 基 BCI 中的可行性和有效性。
该方法通过利用以前会话中记录的用户特定数据(即使使用不同的 EEG 系统和导联),增强了实际 SSVEP 基 BCI 应用的实用性和可用性,具有很大的潜力。