Suppr超能文献

基于 EEG 头戴式设备域自适应(ALPHA)的对齐和融合,以促进基于干电极的 SSVEP-BCI。

Align and Pool for EEG Headset Domain Adaptation (ALPHA) to Facilitate Dry Electrode Based SSVEP-BCI.

出版信息

IEEE Trans Biomed Eng. 2022 Feb;69(2):795-806. doi: 10.1109/TBME.2021.3105331. Epub 2022 Jan 20.

Abstract

OBJECTIVE

The steady-state visual evoked potential based brain-computer interface (SSVEP-BCI) implemented in dry electrodes is a promising paradigm for alternative and augmentative communication in real-world applications. To improve its performance and reduce the calibration effort for dry-electrode systems, we utilize cross-device transfer learning by exploiting auxiliary individual wet-electrode electroencephalogram (EEG).

METHODS

We proposed a novel transfer learning framework named ALign and Pool for EEG Headset domain Adaptation (ALPHA), which aligns the spatial pattern and the covariance for domain adaptation. To evaluate its efficacy, 75 subjects performed an experiment of 2 sessions involving a 12-target SSVEP-BCI task.

RESULTS

ALPHA significantly outperformed a baseline approach (canonical correlation analysis, CCA) and two competing transfer learning approaches (transfer template CCA, ttCCA and least square transformation, LST) in two transfer directions. When transferring from wet to dry EEG headsets, ALPHA significantly outperformed the fully-calibrated approach of task-related component analysis (TRCA).

CONCLUSION

ALPHA advances the frontier of recalibration-free cross-device transfer learning for SSVEP-BCIs and boosts the performance of dry electrode based systems.

SIGNIFICANCE

ALPHA has methodological and practical implications and pushes the boundary of dry electrode based SSVEP-BCI toward real-world applications.

摘要

目的

基于干电极的稳态视觉诱发电位脑-机接口(SSVEP-BCI)是一种在现实应用中替代和增强交流的很有前途的范式。为了提高其性能并减少干电极系统的校准工作量,我们利用辅助个体湿电极脑电图(EEG)进行跨设备迁移学习。

方法

我们提出了一种名为基于 EEG 耳机域自适应的对齐和池化的新型迁移学习框架(ALPHA),该框架对齐了域自适应的空间模式和协方差。为了评估其功效,75 名受试者进行了涉及 12 个目标 SSVEP-BCI 任务的 2 个会话实验。

结果

ALPHA 在两个迁移方向上明显优于基线方法(典型相关分析,CCA)和两种竞争的迁移学习方法(迁移模板 CCA,ttCCA 和最小二乘变换,LST)。当从湿电极 EEG 耳机转移到干电极 EEG 耳机时,ALPHA 明显优于完全校准的任务相关成分分析(TRCA)方法。

结论

ALPHA 推进了 SSVEP-BCI 无重新校准的跨设备迁移学习的前沿,并提高了基于干电极系统的性能。

意义

ALPHA 具有方法学和实际意义,并将基于干电极的 SSVEP-BCI 推向了现实应用的边界。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验