Australian Herbicide Resistance Initiative (AHRI), School of Agriculture and Environment, University of Western Australia (UWA), Perth, Australia.
College of Life Sciences, South China Agricultural University, Guangzhou, China.
Pest Manag Sci. 2020 Feb;76(2):645-652. doi: 10.1002/ps.5561. Epub 2019 Aug 15.
A Lolium rigidum population collected from Western Australia was previously reported as highly resistant to dinitroaniline herbicides mainly due to a Val-202-Phe substitution in the target site α-tubulin protein. To further determine the contribution of the 202 mutation to resistance, two sub-populations, respectively comprising the 202 mutant and wild-type (WT) individuals, were isolated from within the same resistant population and subject to dinitroaniline herbicide doses. A rice transgenic study was conducted to demonstrate whether the amino acid substitution at the 202 residue confers resistance. In addition, as indicated in the phenotyping and genotyping study, non-target enhanced trifluralin metabolism was further examined in the same population.
The 202 mutants were more resistant than the wild-type plants. Rice calli transformed with the L. rigidum mutant α-tubulin gene (Val-202-Phe) were more resistant to dinitroaniline herbicides relative to calli transformed with the wild-type gene. Also, enhanced trifluralin metabolism was detected in the 202 mutants in comparison to the susceptible seedlings.
Both target-site Val-202-Phe α-tubulin mutation and non-target-site enhanced trifluralin metabolism co-exist in this dinitroaniline-resistant L. rigidum population. © 2019 Society of Chemical Industry.
先前有报道称,从澳大利亚西部采集的硬羊茅草种群对二硝基苯胺类除草剂具有高度抗性,主要归因于靶标部位α-微管蛋白蛋白中的 Val-202-Phe 取代。为了进一步确定 202 突变对抗性的贡献,从同一抗性种群中分别分离出包含 202 突变体和野生型(WT)个体的两个亚种群,并对二硝基苯胺类除草剂剂量进行了研究。进行了水稻转基因研究,以证明 202 残基的氨基酸取代是否赋予了抗性。此外,如表型和基因型研究所示,在同一种群中进一步检查了非靶标增强的氟乐灵代谢。
202 突变体比野生型植物更具抗性。与转化野生型基因的水稻愈伤组织相比,转化硬羊茅草突变体α-微管蛋白基因(Val-202-Phe)的愈伤组织对二硝基苯胺类除草剂的抗性更强。此外,与敏感幼苗相比,在 202 突变体中检测到增强的氟乐灵代谢。
在这个对二硝基苯胺类除草剂具有抗性的硬羊茅草种群中,靶标部位 Val-202-Pheα-微管蛋白突变和非靶标部位增强的氟乐灵代谢共存。 © 2019 化学工业协会。