The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK.
Institute of Marine Research, PO Box 1870, Nordnes, NO-5817 Bergen, Norway.
Trends Genet. 2019 Sep;35(9):672-684. doi: 10.1016/j.tig.2019.06.006. Epub 2019 Jul 19.
Aquaculture is the fastest growing food production sector and is rapidly becoming the primary source of seafood for human diets. Selective breeding programs are enabling genetic improvement of production traits, such as disease resistance, but progress is limited by the heritability of the trait and generation interval of the species. New breeding technologies, such as genome editing using CRISPR/Cas9 have the potential to expedite sustainable genetic improvement in aquaculture. Genome editing can rapidly introduce favorable changes to the genome, such as fixing alleles at existing trait loci, creating de novo alleles, or introducing alleles from other strains or species. The high fecundity and external fertilization of most aquaculture species can facilitate genome editing for research and application at a scale that is not possible in farmed terrestrial animals.
水产养殖是增长最快的食品生产部门,正在迅速成为人类饮食中海鲜的主要来源。选择性育种计划使生产性状(如抗病性)的遗传改良成为可能,但进展受到性状的遗传力和物种的世代间隔的限制。新的育种技术,如使用 CRISPR/Cas9 的基因组编辑,有可能加速水产养殖的可持续遗传改良。基因组编辑可以迅速将有利的变化引入基因组,例如固定现有性状位点的等位基因、创造新的等位基因,或引入来自其他菌株或物种的等位基因。大多数水产养殖物种的高繁殖力和体外受精使其能够进行基因组编辑,其规模在陆生养殖动物中是不可能实现的。