Li Bowen, Xie Liyan, Wang Zhaowu, Chen Shi, Ren Hui, Chen Yuliang, Wang Chengming, Zhang Guobin, Jiang Jun, Zou Chongwen
National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, China.
Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials, CAS Center for Excellence in Nanoscience, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.
Angew Chem Int Ed Engl. 2019 Sep 23;58(39):13711-13716. doi: 10.1002/anie.201904148. Epub 2019 Aug 23.
Charge doping is an effective way to induce the metal-insulator transition (MIT) in correlated materials for many important utilizations, which is however practically limited by problem of low stability. An electron-proton co-doping mechanism is used to achieve pronounced phase modulation of monoclinic vanadium dioxide (VO ) at room temperature. Using l-ascorbic acid (AA) solution to treat VO , the ionized AA species donate electrons to the adsorbed VO surface. Charges then electrostatically attract surrounding protons to penetrate, and eventually results in stable hydrogen-doped metallic VO . The variations of electronic structures, especially the electron occupancy of V 3d/O 2p hybrid orbitals, were examined by synchrotron characterizations and first-principle theoretical simulations. The adsorbed molecules protect hydrogen dopants from escaping out of lattice and thereby stabilize the metallic phase for VO .
电荷掺杂是在关联材料中诱导金属-绝缘体转变(MIT)以实现许多重要应用的有效方法,然而实际上它受到低稳定性问题的限制。一种电子-质子共掺杂机制被用于在室温下实现单斜晶型二氧化钒(VO₂)的显著相调制。使用L-抗坏血酸(AA)溶液处理VO₂,电离的AA物种将电子捐赠给吸附的VO₂表面。电荷随后通过静电吸引周围的质子渗透进去,最终形成稳定的氢掺杂金属VO₂。通过同步加速器表征和第一性原理理论模拟研究了电子结构的变化,特别是V 3d/O 2p杂化轨道的电子占据情况。吸附的分子保护氢掺杂剂不逃离晶格,从而稳定VO₂的金属相。