Suppr超能文献

通过银掺杂和纳米颗粒功能化调节氧化锌传感器对挥发性有机化合物的反应性

Tuning ZnO Sensors Reactivity toward Volatile Organic Compounds via Ag Doping and Nanoparticle Functionalization.

作者信息

Postica Vasile, Vahl Alexander, Santos-Carballal David, Dankwort Torben, Kienle Lorenz, Hoppe Mathias, Cadi-Essadek Abdelaziz, de Leeuw Nora H, Terasa Maik-Ivo, Adelung Rainer, Faupel Franz, Lupan Oleg

机构信息

Center for Nanotechnology and Nanosensors, Department of Microelectronics and Biomedical Engineering , Technical University of Moldova , 168 Stefan cel Mare Av. , MD-2004 Chisinau , Republic of Moldova.

School of Chemistry , Cardiff University , Main Building, Park Place, Cardiff CF10 3AT , United Kingdom.

出版信息

ACS Appl Mater Interfaces. 2019 Aug 28;11(34):31452-31466. doi: 10.1021/acsami.9b07275. Epub 2019 Aug 14.

Abstract

Nanomaterials for highly selective and sensitive sensors toward specific gas molecules of volatile organic compounds (VOCs) are most important in developing new-generation of detector devices, for example, for biomarkers of diseases as well as for continuous air quality monitoring. Here, we present an innovative preparation approach for engineering sensors, which allow for full control of the dopant concentrations and the nanoparticles functionalization of columnar material surfaces. The main outcome of this powerful design concept lies in fine-tuning the reactivity of the sensor surfaces toward the VOCs of interest. First, nanocolumnar and well-distributed Ag-doped zinc oxide (ZnO:Ag) thin films are synthesized from chemical solution, and, at a second stage, noble nanoparticles of the required size are deposited using a gas aggregation source, ensuring that no percolating paths are formed between them. Typical samples that were investigated are Ag-doped and Ag nanoparticle-functionalized ZnO:Ag nanocolumnar films. The highest responses to VOCs, in particular to (CH)CHOH, were obtained at a low operating temperature (250 °C) for the samples synergistically enhanced with dopants and nanoparticles simultaneously. In addition, the response times, particularly the recovery times, are greatly reduced for the fully modified nanocolumnar thin films for a wide range of operating temperatures. The adsorption of propanol, acetone, methane, and hydrogen at various surface sites of the Ag-doped Ag/ZnO(0001) surface has been examined with the density functional theory (DFT) calculations to understand the preference for organic compounds and to confirm experimental results. The response of the synergistically enhanced sensors to gas molecules containing certain functional groups is in excellent agreement with density functional theory calculations performed in this work too. This new fabrication strategy can underpin the next generation of advanced materials for gas sensing applications and prevent VOC levels that are hazardous to human health and can cause environmental damages.

摘要

用于对挥发性有机化合物(VOCs)特定气体分子具有高选择性和高灵敏度的传感器的纳米材料,在开发新一代检测设备中至关重要,例如用于疾病生物标志物以及连续空气质量监测。在此,我们提出一种用于制造传感器的创新制备方法,该方法能够完全控制掺杂剂浓度以及柱状材料表面的纳米颗粒功能化。这种强大设计理念的主要成果在于微调传感器表面对目标VOCs的反应活性。首先,通过化学溶液合成纳米柱状且分布均匀的Ag掺杂氧化锌(ZnO:Ag)薄膜,然后在第二阶段,使用气体聚集源沉积所需尺寸的贵金属纳米颗粒,确保它们之间不会形成渗流路径。所研究的典型样品是Ag掺杂且Ag纳米颗粒功能化的ZnO:Ag纳米柱状薄膜。对于同时用掺杂剂和纳米颗粒协同增强的样品,在低工作温度(250℃)下对VOCs,特别是对(CH)CHOH获得了最高响应。此外,对于完全改性的纳米柱状薄膜,在很宽的工作温度范围内,响应时间,尤其是恢复时间大大缩短。利用密度泛函理论(DFT)计算研究了丙醇、丙酮、甲烷和氢气在Ag掺杂的Ag/ZnO(0001)表面不同表面位点的吸附情况,以了解对有机化合物的偏好并确认实验结果。协同增强的传感器对含有某些官能团的气体分子的响应也与本工作中进行的密度泛函理论计算非常吻合。这种新的制造策略可为下一代用于气体传感应用的先进材料提供支撑,并防止有害于人类健康和可能造成环境破坏的VOC水平。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e8a1/7007004/7ea183f69e05/am9b07275_0011.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验