Ramele Rodrigo, Villar Ana Julia, Santos Juan Miguel
Computer Engineering Department, Centro de Inteligencia Computacional, Instituto Tecnológico de Buenos Aires (ITBA), Buenos Aires, Argentina.
Front Comput Neurosci. 2019 Jul 5;13:43. doi: 10.3389/fncom.2019.00043. eCollection 2019.
The analysis of Electroencephalographic (EEG) signals is of ulterior importance to aid in the diagnosis of mental disease and to increase our understanding of the brain. Traditionally, clinical EEG has been analyzed in terms of temporal waveforms, looking at rhythms in spontaneous activity, subjectively identifying troughs and peaks in Event-Related Potentials (ERP), or by studying graphoelements in pathological sleep stages. Additionally, the discipline of Brain Computer Interfaces (BCI) requires new methods to decode patterns from non-invasive EEG signals. This field is developing alternative communication pathways to transmit volitional information from the Central Nervous System. The technology could potentially enhance the quality of life of patients affected by neurodegenerative disorders and other mental illness. This work mimics what electroencephalographers have been doing clinically, visually inspecting, and categorizing phenomena within the EEG by the extraction of features from images of signal plots. These features are constructed based on the calculation of histograms of oriented gradients from pixels around the signal plot. It aims to provide a new objective framework to analyze, characterize and classify EEG signal waveforms. The feasibility of the method is outlined by detecting the P300, an ERP elicited by the oddball paradigm of rare events, and implementing an offline P300-based BCI Speller. The validity of the proposal is shown by offline processing a public dataset of Amyotrophic Lateral Sclerosis (ALS) patients and an own dataset of healthy subjects.
脑电图(EEG)信号分析对于辅助精神疾病诊断以及增进我们对大脑的理解具有至关重要的意义。传统上,临床脑电图分析是基于时间波形,观察自发活动中的节律,主观识别事件相关电位(ERP)中的波谷和波峰,或者研究病理睡眠阶段的图形元素。此外,脑机接口(BCI)学科需要新的方法来解码来自非侵入性EEG信号的模式。该领域正在开发替代通信途径,以从中枢神经系统传输意志信息。这项技术有可能提高受神经退行性疾病和其他精神疾病影响患者的生活质量。这项工作模仿了脑电图学家在临床上所做的事情,即通过从信号图图像中提取特征来目视检查和分类脑电图中的现象。这些特征是基于对信号图周围像素的定向梯度直方图的计算构建的。其目的是提供一个新的客观框架来分析、表征和分类EEG信号波形。通过检测P300(一种由罕见事件的oddball范式引发的ERP)并实现基于离线P300的BCI拼写器,概述了该方法的可行性。通过对肌萎缩侧索硬化症(ALS)患者的公共数据集和健康受试者的自有数据集进行离线处理,证明了该提议的有效性。