Ail Brian Ezequiel, Ramele Rodrigo, Gambini Juliana, Santos Juan Miguel
Instituto Tecnológico de Buenos Aires (ITBA), Buenos Aires C1437, Argentina.
Centro de Investigación en Informática Aplicada (CIDIA), Universidad Nacional de Hurlingham (UNAHUR), Hurlingham B1688, Argentina.
Brain Sci. 2024 Aug 20;14(8):836. doi: 10.3390/brainsci14080836.
This work proposes an intrinsically explainable, straightforward method to decode P300 waveforms from electroencephalography (EEG) signals, overcoming the black box nature of deep learning techniques. The proposed method allows convolutional neural networks to decode information from images, an area where they have achieved astonishing performance. By plotting the EEG signal as an image, it can be both visually interpreted by physicians and technicians and detected by the network, offering a straightforward way of explaining the decision. The identification of this pattern is used to implement a P300-based speller device, which can serve as an alternative communication channel for persons affected by amyotrophic lateral sclerosis (ALS). This method is validated by identifying this signal by performing a brain-computer interface simulation on a public dataset from ALS patients. Letter identification rates from the speller on the dataset show that this method can identify the P300 signature on the set of 8 patients. The proposed approach achieves similar performance to other state-of-the-art proposals while providing clinically relevant explainability (XAI).
这项工作提出了一种本质上可解释的、直接的方法来从脑电图(EEG)信号中解码P300波形,克服了深度学习技术的黑箱性质。所提出的方法允许卷积神经网络从图像中解码信息,在这一领域它们已经取得了惊人的性能。通过将EEG信号绘制为图像,它既可以由医生和技术人员进行视觉解读,也可以由网络进行检测,提供了一种解释决策的直接方式。这种模式的识别被用于实现一种基于P300的拼写器设备,它可以作为肌萎缩侧索硬化症(ALS)患者的替代通信渠道。通过对来自ALS患者的公共数据集进行脑机接口模拟来识别该信号,从而验证了该方法。数据集中拼写器的字母识别率表明,该方法可以在8名患者的数据集上识别出P300特征。所提出的方法在提供临床相关的可解释性(XAI)的同时,实现了与其他现有最先进方案相似的性能。