From the Department of Radiology, Mayo Clinic, Rochester, Minn (A.P.); Department of Diagnostic, Interventional and Pediatric Radiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland (V.C.O.); Departments of Biomedical Engineering (W.C.L., M.A.G.), Epidemiology and Biostatistics (S.M., M.S.), and Radiology (Y.J., C.B., M.A.G., V.G.), Case Western Reserve University, Cleveland, Ohio; Department of Radiology, University of Michigan, UH B1 G503, 1500 E. Medical Center Drive, SPC 5030, Ann Arbor, MI 48109-5030 (Y.J., V.G.); Department of Radiology, Mayo Clinic, Phoenix, Az (I.J.P.); Departments of Radiology (I.J.P., D.N., C.B., M.A.G.) and Urology (I.J., L.E.P.), University Hospitals Cleveland Medical Center, Cleveland, Ohio.
Radiology. 2019 Sep;292(3):685-694. doi: 10.1148/radiol.2019181705. Epub 2019 Jul 23.
BackgroundPreliminary studies have shown that MR fingerprinting-based relaxometry combined with apparent diffusion coefficient (ADC) mapping can be used to differentiate normal peripheral zone from prostate cancer and prostatitis. The utility of relaxometry and ADC mapping for the transition zone (TZ) is unknown.PurposeTo evaluate the utility of MR fingerprinting combined with ADC mapping for characterizing TZ lesions.Materials and MethodsTZ lesions that were suspicious for cancer in men who underwent MRI with T2-weighted imaging and ADC mapping ( values, 50-1400 sec/mm), MR fingerprinting with steady-state free precession, and targeted biopsy (60 in-gantry and 15 cognitive targeting) between September 2014 and August 2018 in a single university hospital were retrospectively analyzed. Two radiologists blinded to Prostate Imaging Reporting and Data System (PI-RADS) scores and pathologic diagnosis drew regions of interest on cancer-suspicious lesions and contralateral visually normal TZs (NTZs) on MR fingerprinting and ADC maps. Linear mixed models compared two-reader means of T1, T2, and ADC. Generalized estimating equations logistic regression analysis was used to evaluate both MR fingerprinting and ADC in differentiating NTZ, cancers and noncancers, clinically significant (Gleason score ≥ 7) cancers from clinically insignificant lesions (noncancers and Gleason 6 cancers), and characterizing PI-RADS version 2 category 3 lesions.ResultsIn 67 men (mean age, 66 years ± 8 [standard deviation]) with 75 lesions, targeted biopsy revealed 37 cancers (six PI-RADS category 3 cancers and 31 PI-RADS category 4 or 5 cancers) and 38 noncancers (31 PI-RADS category 3 lesions and seven PI-RADS category 4 or 5 lesions). The T1, T2, and ADC of NTZ (1800 msec ± 150, 65 msec ± 22, and [1.13 ± 0.19] × 10 mm/sec, respectively) were higher than those in cancers (1450 msec ± 110, 36 msec ± 11, and [0.57 ± 0.13] × 10 mm/sec, respectively; < .001 for all). The T1, T2, and ADC in cancers were lower than those in noncancers (1620 msec ± 120, 47 msec ± 16, and [0.82 ± 0.13] × 10 mm/sec, respectively; = .001 for T1 and ADC and = .03 for T2). The area under the receiver operating characteristic curve (AUC) for T1 plus ADC was 0.94 for separation. T1 and ADC in clinically significant cancers (1440 msec ± 140 and [0.58 ± 0.14] × 10 mm/sec, respectively) were lower than those in clinically insignificant lesions (1580 msec ± 120 and [0.75 ± 0.17] × 10 mm/sec, respectively; = .001 for all). The AUC for T1 plus ADC was 0.81 for separation. Within PI-RADS category 3 lesions, T1 and ADC of cancers (1430 msec ± 220 and [0.60 ± 0.17] × 10 mm/sec, respectively) were lower than those of noncancers (1630 msec ± 120 and [0.81 ± 0.13] × 10 mm/sec, respectively; = .006 for T1 and = .004 for ADC). The AUC for T1 was 0.79 for differentiating category 3 lesions.ConclusionMR fingerprinting-based relaxometry combined with apparent diffusion coefficient mapping may improve transition zone lesion characterization.© RSNA, 2019
背景 初步研究表明,基于磁共振指纹图谱的弛豫率测定联合表观扩散系数(ADC)图可用于鉴别前列腺外周带的正常组织、前列腺癌和前列腺炎。但是,其在移行带(TZ)的应用价值尚不清楚。 目的 评估磁共振指纹图谱联合 ADC 图在 TZ 病变特征描述中的应用价值。 材料与方法 回顾性分析 2014 年 9 月至 2018 年 8 月期间,在一家大学医院接受 MRI 平扫(T2WI 和 ADC 值,50-1400 sec/mm)、稳态自由进动磁共振指纹图谱检查和靶向活检(60 个机架内和 15 个认知靶向)的怀疑为癌症的男性 TZ 病变。两名放射科医生在不知道前列腺影像报告和数据系统(PI-RADS)评分和病理诊断的情况下,在磁共振指纹图谱和 ADC 图上对可疑癌症病变和对侧视觉正常 TZ(NTZ)勾画感兴趣区。采用线性混合模型比较两位观察者 T1、T2 和 ADC 的均值。采用广义估计方程逻辑回归分析评估磁共振指纹图谱和 ADC 对 NTZ、癌症和非癌症、Gleason 评分≥7 的临床显著癌症与非癌症和 Gleason 评分 6 的癌症以及 PI-RADS 版本 2 3 类病变的鉴别诊断能力。 结果 在 67 例(平均年龄,66 岁±8[标准差])男性的 75 个病灶中,靶向活检显示 37 个癌症(6 个 PI-RADS 3 类癌症和 31 个 PI-RADS 4 类或 5 类癌症)和 38 个非癌症(31 个 PI-RADS 3 类病变和 7 个 PI-RADS 4 类或 5 类病变)。NTZ 的 T1、T2 和 ADC 值分别为(1800 msec±150)、(65 msec±22)和[1.13±0.19]×10 mm/sec,高于癌症的 T1、T2 和 ADC 值(分别为 1450 msec±110、36 msec±11 和[0.57±0.13]×10 mm/sec;所有 P 值均<.001)。癌症的 T1、T2 和 ADC 值低于非癌症的 T1、T2 和 ADC 值(分别为 1620 msec±120、47 msec±16 和[0.82±0.13]×10 mm/sec;T1 和 ADC 的 P 值均<.001,T2 的 P 值=.03)。T1 联合 ADC 的受试者工作特征曲线下面积(AUC)为 0.94,可用于区分。临床显著癌症(1440 msec±140 和[0.58±0.14]×10 mm/sec)的 T1 和 ADC 值低于临床非显著癌症(1580 msec±120 和[0.75±0.17]×10 mm/sec;所有 P 值均<.001)。T1 联合 ADC 的 AUC 为 0.81,可用于区分。在 PI-RADS 3 类病变中,癌症的 T1 和 ADC 值(1430 msec±220 和[0.60±0.17]×10 mm/sec)低于非癌症的 T1 和 ADC 值(1630 msec±120 和[0.81±0.13]×10 mm/sec;T1 的 P 值=.006,ADC 的 P 值=.004)。T1 的 AUC 为 0.79,可用于区分 3 类病变。 结论 基于磁共振指纹图谱的弛豫率测定联合 ADC 图可提高 TZ 病变特征描述的准确性。 ©2019 RSNA