Veiga Almagro Carlos, Di Castro Mario, Lunghi Giacomo, Marín Prades Raúl, Sanz Valero Pedro José, Pérez Manuel Ferre, Masi Alessandro
CERN, EN-SMM Survey, Measurement and Mechatronics group, 1217 Geneva, Switzerland.
Centro de Automatica y Robotica (CAR) UPM-CSIC, Universidad Politecnica de Madrid, 28006 Madrid, Spain.
Sensors (Basel). 2019 Jul 22;19(14):3220. doi: 10.3390/s19143220.
Robotic interventions in hazardous scenarios need to pay special attention to safety, as in most cases it is necessary to have an expert operator in the loop. Moreover, the use of a multi-modal Human-Robot Interface allows the user to interact with the robot using manual control in critical steps, as well as semi-autonomous behaviours in more secure scenarios, by using, for example, object tracking and recognition techniques. This paper describes a novel vision system to track and estimate the depth of metallic targets for robotic interventions. The system has been designed for on-hand monocular cameras, focusing on solving lack of visibility and partial occlusions. This solution has been validated during real interventions at the Centre for Nuclear Research (CERN) accelerator facilities, achieving 95% success in autonomous mode and 100% in a supervised manner. The system increases the safety and efficiency of the robotic operations, reducing the cognitive fatigue of the operator during non-critical mission phases. The integration of such an assistance system is especially important when facing complex (or repetitive) tasks, in order to reduce the work load and accumulated stress of the operator, enhancing the performance and safety of the mission.
在危险场景中的机器人干预需要特别关注安全性,因为在大多数情况下,有专家操作员参与其中是必要的。此外,使用多模态人机界面允许用户在关键步骤中通过手动控制与机器人交互,以及在更安全的场景中使用例如目标跟踪和识别技术等进行半自主行为。本文描述了一种用于机器人干预的新型视觉系统,用于跟踪和估计金属目标的深度。该系统是为手持单目相机设计的,专注于解决能见度不足和部分遮挡的问题。该解决方案已在欧洲核子研究中心(CERN)加速器设施的实际干预中得到验证,在自主模式下成功率达到95%,在有监督的情况下达到100%。该系统提高了机器人操作的安全性和效率,减少了非关键任务阶段操作员的认知疲劳。当面对复杂(或重复)任务时,集成这样的辅助系统尤为重要,以便减轻操作员的工作量和累积压力,提高任务的性能和安全性。