Cichosz Stefan, Masek Anna
Lodz University of Technology, Institute of Polymer and Dye Technology, Faculty of Chemistry, Stefanowskiego 12/16, 90-924 Lodz, Poland.
Polymers (Basel). 2019 Jul 11;11(7):1174. doi: 10.3390/polym11071174.
The following article highlights the importance of an indispensable process in cellulose fibers (UFC100) modification which may change the biopolymer properties-drying. The reader is provided with a broad range of information considering the drying process consequences on the chemical treatment of the cellulose. This research underlines the importance of UFC100 moisture content reduction considering polymer composites application with the employment of a technique different than thermal treating. Therefore, a new hybrid chemical modification approach is introduced. It consists of two steps: solvent exchange (with ethanol either hexane) and chemical treatment (maleic anhydride-MA). With the use of Fourier-transform infrared spectroscopy (FT-IR), it has been proven that the employment of different solvents may contribute to the higher yield of the modification process as they cause rearrangements in hydrogen bonds structure, swell the biopolymer and, therefore, affect its molecular packing. Furthermore, according to the thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC), the improvement in fibers thermal resistance was noticed, e.g., shift in the value of 5% temperature mass loss from 240 °C (regular modification) to 306 °C (while solvent employed). Moreover, the research was broadened with cellulose moisture content influence on the modification process-tested fibers were either dried (D) or not dried (ND) before the hybrid chemical treatment. According to the gathered data, D cellulose exhibits elevated thermal resistance and ND fibers are more prone to the MA modification. What should be emphasized, in the case of all carried out UFC100 treatments, is that a decrease in moisture contend was evidenced-from approximately 4% in case of thermal drying to 1.7% for hybrid chemical modification. This is incredibly promising considering the possibility of the treated fibers application in polymer matrix.
以下文章强调了纤维素纤维(UFC100)改性中一个不可或缺的过程——干燥的重要性,该过程可能会改变生物聚合物的性质。读者将获得关于干燥过程对纤维素化学处理影响的广泛信息。本研究强调了在聚合物复合材料应用中,采用不同于热处理的技术降低UFC100水分含量的重要性。因此,引入了一种新的混合化学改性方法。它包括两个步骤:溶剂交换(用乙醇或己烷)和化学处理(马来酸酐-MA)。通过傅里叶变换红外光谱(FT-IR)已证明,使用不同溶剂可能有助于提高改性过程的产率,因为它们会导致氢键结构重排、使生物聚合物膨胀,从而影响其分子堆积。此外,根据热重分析(TGA)和差示扫描量热法(DSC),发现纤维的耐热性有所提高,例如,5%温度质量损失值从240℃(常规改性)变为306℃(使用溶剂时)。此外,该研究还扩展到纤维素水分含量对改性过程的影响——在混合化学处理之前,测试的纤维要么经过干燥(D),要么未经过干燥(ND)。根据收集到的数据,D纤维素表现出更高的耐热性,而ND纤维更容易进行MA改性。需要强调的是,在所有进行的UFC100处理中,水分含量均有所降低——从热干燥时的约4%降至混合化学改性时的1.7%。考虑到处理后的纤维应用于聚合物基体的可能性,这是非常有前景的。