Suppr超能文献

基于卷积神经网络和对抗网络的跨细胞类型预测 TF 结合位点

Cross-Cell-Type Prediction of TF-Binding Site by Integrating Convolutional Neural Network and Adversarial Network.

机构信息

School of Computer Science and Technology, Harbin Institute of Technology, Shenzhen 518055, China.

Department of Computing, The Hong Kong Polytechnic University, Hong Kong 810005, China.

出版信息

Int J Mol Sci. 2019 Jul 12;20(14):3425. doi: 10.3390/ijms20143425.

Abstract

Transcription factor binding sites (TFBSs) play an important role in gene expression regulation. Many computational methods for TFBS prediction need sufficient labeled data. However, many transcription factors (TFs) lack labeled data in cell types. We propose a novel method, referred to as DANN_TF, for TFBS prediction. DANN_TF consists of a feature extractor, a label predictor, and a domain classifier. The feature extractor and the domain classifier constitute an Adversarial Network, which ensures that learned features are common features across different cell types. DANN_TF is evaluated on five TFs in five cell types with a total of 25 cell-type TF pairs and compared to a baseline method which does not use Adversarial Network. For both data augmentation and cross-cell-type prediction, DANN_TF performs better than the baseline method on most cell-type TF pairs. DANN_TF is further evaluated by an additional 13 TFs in the five cell types with a total of 65 cell-type TF pairs. Results show that DANN_TF achieves significantly higher AUC than the baseline method on 96.9% pairs of the 65 cell-type TF pairs. This is a strong indication that DANN_TF can indeed learn common features for cross-cell-type TFBS prediction.

摘要

转录因子结合位点 (TFBSs) 在基因表达调控中起着重要作用。许多用于 TFBS 预测的计算方法都需要充足的标记数据。然而,许多转录因子 (TFs) 在细胞类型中缺乏标记数据。我们提出了一种新的方法,称为 DANN_TF,用于 TFBS 预测。DANN_TF 由特征提取器、标签预测器和域分类器组成。特征提取器和域分类器构成了一个对抗网络,确保学习到的特征是不同细胞类型共有的特征。在五种细胞类型中的五个 TF 上评估了 DANN_TF,共有 25 对细胞类型 TF,与不使用对抗网络的基线方法进行了比较。对于数据增强和跨细胞类型预测,DANN_TF 在大多数细胞类型 TF 对中都优于基线方法。DANN_TF 还在五种细胞类型中的另外 13 个 TF 上进行了评估,共有 65 对细胞类型 TF。结果表明,在 65 对细胞类型 TF 对中,DANN_TF 在 96.9%的对上的 AUC 显著高于基线方法。这强烈表明 DANN_TF 确实可以学习跨细胞类型 TFBS 预测的共同特征。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ef2/6679139/6f1f3c0ca04f/ijms-20-03425-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验