Suppr超能文献

通过新型核苷酸级别的深度神经网络的对抗训练对转录因子结合进行跨物种预测。

Cross-Species Prediction of Transcription Factor Binding by Adversarial Training of a Novel Nucleotide-Level Deep Neural Network.

机构信息

Ningbo Institute of Digital Twin, Eastern Institute of Technology, Ningbo, 315201, China.

Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230021, China.

出版信息

Adv Sci (Weinh). 2024 Sep;11(36):e2405685. doi: 10.1002/advs.202405685. Epub 2024 Jul 30.

Abstract

Cross-species prediction of TF binding remains a major challenge due to the rapid evolutionary turnover of individual TF binding sites, resulting in cross-species predictive performance being consistently worse than within-species performance. In this study, a novel Nucleotide-Level Deep Neural Network (NLDNN) is first proposed to predict TF binding within or across species. NLDNN regards the task of TF binding prediction as a nucleotide-level regression task, which takes DNA sequences as input and directly predicts experimental coverage values. Beyond predictive performance, it also assesses model performance by locating potential TF binding regions, discriminating TF-specific single-nucleotide polymorphisms (SNPs), and identifying causal disease-associated SNPs. The experimental results show that NLDNN outperforms the competing methods in these tasks. Then, a dual-path framework is designed for adversarial training of NLDNN to further improve the cross-species prediction performance by pulling the domain space of human and mouse species closer. Through comparison and analysis, it finds that adversarial training not only can improve the cross-species prediction performance between humans and mice but also enhance the ability to locate TF binding regions and discriminate TF-specific SNPs. By visualizing the predictions, it is figured out that the framework corrects some mispredictions by amplifying the coverage values of incorrectly predicted peaks.

摘要

跨物种的 TF 结合预测仍然是一个主要挑战,因为单个 TF 结合位点的快速进化更替,导致跨物种的预测性能始终不如种内性能。在这项研究中,首次提出了一种新的核苷酸级深度神经网络 (NLDNN) 来预测种内或种间的 TF 结合。NLDNN 将 TF 结合预测任务视为核苷酸级回归任务,它将 DNA 序列作为输入,并直接预测实验覆盖值。除了预测性能外,它还通过定位潜在的 TF 结合区域、区分 TF 特异性单核苷酸多态性 (SNP) 和识别因果疾病相关 SNP 来评估模型性能。实验结果表明,NLDNN 在这些任务中的表现优于竞争方法。然后,设计了一种双路径框架用于 NLDNN 的对抗训练,通过拉近人类和小鼠物种的域空间来进一步提高跨物种预测性能。通过比较和分析,发现对抗训练不仅可以提高人类和小鼠之间的跨物种预测性能,而且还可以增强定位 TF 结合区域和区分 TF 特异性 SNP 的能力。通过可视化预测,发现该框架通过放大错误预测峰的覆盖值来纠正一些错误预测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/727f/11423150/14c63fbd72af/ADVS-11-2405685-g004.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验