Sarapulova Veronika, Shkorkina Inna, Mareev Semyon, Pismenskaya Natalia, Kononenko Natalia, Larchet Christian, Dammak Lasaad, Nikonenko Victor
Department of Physical Chemistry, Kuban State University, 149 Stavropolskaya st., 350040 Krasnodar, Russia.
Institut de Chimie et des Matériaux Paris-Est, UMR7182 CNRS-Université Paris-Est, 2 rue Henri Dunant, 94320 Thiais, France.
Membranes (Basel). 2019 Jul 14;9(7):84. doi: 10.3390/membranes9070084.
Ion-exchange membranes (IEMs) find more and more applications; the success of an application depends on the properties of the membranes selected for its realization. For the first time, the results of a comprehensive characterization of the transport properties of IEMs from three manufactures (Astom, Japan; Shchekinoazot, Russia; and Fujifilm, The Netherlands) are reported. Our own and literature data are presented and analyzed using the microheterogeneous model. Homogeneous Neosepta AMX and CMX (Astom), heterogeneous MA-41 and MK-40 (Shchekinoazot), and AEM Type-I, AEM Type-II, AEM Type-X, as well as CEM Type-I, CEM Type-II, and CEM Type-X produced by the electrospinning method (Fujifim) were studied. The concentration dependencies of the conductivity, diffusion permeability, as well as the real and apparent ion transport numbers in these membranes were measured. The counterion transport number characterizing the membrane permselectivity increases in the following order: CEM Type-I ≅ MA-41 < AEM Type-I < MK-40 < CMX ≅ CEM Type-II ≅ CEM Type-X ≅ AEM Type-II < AMX < AEM Type-X. It is shown that the properties of the AEM Type-I and CEM Type-I membranes are close to those of the heterogeneous MA-41 and MK-40 membranes, while the properties of Fujifilm Type-II and Type-X membranes are close to those of the homogeneous AMX and CMX membranes. This difference is related to the fact that the Type-I membranes have a relatively high parameter , the volume fraction of the electroneutral solution filling the intergel spaces. This high value is apparently due to the open-ended pores, formed by the reinforcing fabric filaments of the Type-I membranes, which protrude above the surface of these membranes.
离子交换膜(IEMs)的应用越来越广泛;一项应用的成功与否取决于为实现该应用而选择的膜的性能。首次报道了对来自三个制造商(日本阿斯特姆公司、俄罗斯舍基诺阿佐特公司和荷兰富士胶片公司)的离子交换膜传输性能进行全面表征的结果。我们自己的数据和文献数据使用微观非均相模型进行了呈现和分析。研究了均质的Neosepta AMX和CMX(阿斯特姆公司)、非均质的MA - 41和MK - 40(舍基诺阿佐特公司)以及通过静电纺丝法生产的AEM - I型、AEM - II型、AEM - X型,以及CEM - I型、CEM - II型和CEM - X型(富士胶片公司)。测量了这些膜中电导率、扩散渗透率以及真实和表观离子迁移数的浓度依赖性。表征膜选择透过性的抗衡离子迁移数按以下顺序增加:CEM - I型≅MA - 41<AEM - I型<MK - 40<CMX≅CEM - II型≅CEM - X型≅AEM - II型<AMX<AEM - X型。结果表明,AEM - I型和CEM - I型膜的性能与非均质的MA - 41和MK - 40膜相近,而富士胶片公司的II型和X型膜的性能与均质的AMX和CMX膜相近。这种差异与I型膜具有相对较高的参数有关,即填充凝胶间空间的电中性溶液的体积分数。这个高值显然是由于I型膜的增强织物细丝形成的开口孔隙,这些孔隙突出于这些膜的表面之上。