Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, Iowa City, Iowa.
Free Radical and Radiation Biology Program, Department of Radiation Oncology, The University of Iowa, Iowa City, Iowa.
Mol Cancer Res. 2019 Oct;17(10):2102-2114. doi: 10.1158/1541-7786.MCR-19-0381. Epub 2019 Jul 23.
The clinical potential of pharmacologic ascorbate (P-AscH; intravenous delivery achieving mmol/L concentrations in blood) as an adjuvant in cancer therapy is being reevaluated. At mmol/L concentrations, P-AscH is thought to exhibit anticancer activity via generation of a flux of HO in tumors, which leads to oxidative distress. Here, we use cell culture models of pancreatic cancer to examine the effects of P-AscH on DNA damage, and downstream consequences, including changes in bioenergetics. We have found that the high flux of HO produced by P-AscH induces DNA damage. In response to this DNA damage, we observed that PARP1 is hyperactivated. Using our unique absolute quantitation, we found that P-AscH mediated the overactivation of PARP1, which results in consumption of NAD, and subsequently depletion of ATP leading to mitotic cell death. We have also found that Chk1 plays a major role in the maintenance of genomic integrity following treatment with P-AscH. Hyperactivation of PARP1 and DNA repair are ATP-consuming processes. Using a Seahorse XF96 analyzer, we demonstrated that the severe decrease in ATP after challenging with P-AscH is because of increased demand, not changes in the rate of production. Genetic deletion and pharmacologic inhibition of PARP1 preserved both NAD and ATP; however, the toxicity of P-AscH remained. These data indicate that disruption of bioenergetics is a secondary factor in the toxicity of P-AscH; damage to DNA appears to be the primary factor. IMPLICATIONS: Efforts to leverage P-AscH in cancer therapy should first focus on DNA damage.
药理性抗坏血酸(P-AscH;静脉给药可使血液中的浓度达到 mmol/L)作为癌症治疗的辅助剂的临床潜力正在重新评估。在 mmol/L 的浓度下,P-AscH 被认为通过在肿瘤中产生 HO 的通量来发挥抗癌活性,从而导致氧化应激。在这里,我们使用胰腺癌细胞培养模型来研究 P-AscH 对 DNA 损伤的影响,以及下游后果,包括生物能量学的变化。我们发现,P-AscH 产生的高 HO 通量会导致 DNA 损伤。作为对此 DNA 损伤的反应,我们观察到 PARP1 被过度激活。使用我们独特的绝对定量方法,我们发现 P-AscH 介导了 PARP1 的过度激活,导致 NAD 的消耗,随后 ATP 的耗竭,导致有丝分裂细胞死亡。我们还发现,Chk1 在 P-AscH 治疗后维持基因组完整性方面发挥着重要作用。PARP1 的过度激活和 DNA 修复都是消耗 ATP 的过程。使用 Seahorse XF96 分析仪,我们证明了用 P-AscH 处理后 ATP 的严重减少是由于需求增加,而不是生产速率的变化。PARP1 的基因缺失和药理学抑制均保留了 NAD 和 ATP;然而,P-AscH 的毒性仍然存在。这些数据表明,破坏生物能量学是 P-AscH 毒性的次要因素;DNA 损伤似乎是主要因素。意义:在癌症治疗中利用 P-AscH 的努力应首先集中在 DNA 损伤上。