Suppr超能文献

类风湿关节炎分层和分类的候选标志物。

Candidate Markers for Stratification and Classification in Rheumatoid Arthritis.

机构信息

Bergen Group of Epidemiology and Biomarkers in Rheumatic Disease, Department of Rheumatology, Haukeland University Hospital, Bergen, Norway.

Department of Clinical Science, University of Bergen, Bergen, Norway.

出版信息

Front Immunol. 2019 Jul 5;10:1488. doi: 10.3389/fimmu.2019.01488. eCollection 2019.

Abstract

Rheumatoid arthritis (RA) is a chronic autoimmune, inflammatory disease, characterized by synovitis in small- and medium-sized joints and, if not treated early and efficiently, joint damage, and destruction. RA is a heterogeneous disease with a plethora of treatment options. The pro-inflammatory cytokine tumor necrosis factor (TNF) plays a central role in the pathogenesis of RA, and TNF inhibitors effectively repress inflammatory activity in RA. Currently, treatment decisions are primarily based on empirics and economic considerations. However, the considerable interpatient variability in response to treatment is a challenge. Markers for a more exact patient classification and stratification are lacking. The objective of this study was to identify markers in immune cell populations that distinguish RA patients from healthy donors with an emphasis on TNF signaling. We employed mass cytometry (CyTOF) with a panel of 13 phenotyping and 10 functional markers to explore signaling in unstimulated and TNF-stimulated peripheral blood mononuclear cells from 20 newly diagnosed, untreated RA patients and 20 healthy donors. The resulting high-dimensional data were analyzed in three independent analysis pipelines, characterized by differences in both data clean-up, identification of cell subsets/clustering and statistical approaches. All three analysis pipelines identified p-p38, IkBa, p-cJun, p-NFkB, and CD86 in cells of both the innate arm (myeloid dendritic cells and classical monocytes) and the adaptive arm (memory CD4 T cells) of the immune system as markers for differentiation between RA patients and healthy donors. Inclusion of the markers p-Akt and CD120b resulted in the correct classification of 18 of 20 RA patients and 17 of 20 healthy donors in regression modeling based on a combined model of basal and TNF-induced signal. Expression patterns in a set of functional markers and specific immune cell subsets were distinct in RA patients compared to healthy individuals. These signatures may support studies of disease pathogenesis, provide candidate markers for response, and non-response to TNF inhibitor treatment, and aid the identification of future therapeutic targets.

摘要

类风湿关节炎(RA)是一种慢性自身免疫性炎症性疾病,其特征是小关节和中等关节的滑膜炎,如果早期和有效地治疗,会导致关节损伤和破坏。RA 是一种异质性疾病,有多种治疗选择。促炎细胞因子肿瘤坏死因子(TNF)在 RA 的发病机制中起着核心作用,TNF 抑制剂有效地抑制 RA 的炎症活性。目前,治疗决策主要基于经验和经济考虑。然而,治疗反应的患者间变异性很大,这是一个挑战。缺乏用于更准确的患者分类和分层的标志物。本研究的目的是确定免疫细胞群体中的标志物,这些标志物将 RA 患者与健康供者区分开来,重点是 TNF 信号。我们使用了 13 个表型和 10 个功能标志物的组合,通过质谱流式细胞术(CyTOF)来研究 20 例新诊断、未经治疗的 RA 患者和 20 例健康供者外周血单个核细胞在未刺激和 TNF 刺激下的信号。所得的高维数据通过三个独立的分析管道进行分析,这些分析管道在数据清理、细胞亚群/聚类的识别和统计方法方面存在差异。所有三个分析管道都确定了 p-p38、IkBa、p-cJun、p-NFkB 和 CD86,它们是免疫系统固有臂(髓样树突状细胞和经典单核细胞)和适应性臂(记忆 CD4 T 细胞)中的细胞标志物,可将 RA 患者与健康供者区分开来。在基于基础和 TNF 诱导信号的组合模型的回归建模中,纳入标志物 p-Akt 和 CD120b 可正确分类 20 例 RA 患者中的 18 例和 20 例健康供者中的 17 例。与健康个体相比,RA 患者的一组功能标志物和特定免疫细胞亚群的表达模式存在明显差异。这些特征可能支持疾病发病机制的研究,为 TNF 抑制剂治疗的反应和非反应提供候选标志物,并有助于识别未来的治疗靶点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b722/6626904/531d03027eb3/fimmu-10-01488-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验