Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan.
Institute of Physics, Academia Sinica, Nankang, Taipei, 11529, Taiwan.
Adv Mater. 2019 Sep;31(37):e1901077. doi: 10.1002/adma.201901077. Epub 2019 Jul 24.
Twisting between two stacked monolayers modulates periodic potentials and forms the Moiré electronic superlattices, which offers an additional degree of freedom to alter material property. Considerable unique observations, including unconventional superconductivity, coupled spin-valley states, and quantized interlayer excitons are correlated to the electronic superlattices but further study requires reliable routes to study the Moiré in real space. Scanning tunneling microscopy (STM) is ideal to precisely probe the Moiré superlattice and correlate coupled parameters among local electronic structures, strains, defects, and band alignment at atomic scale. Here, a clean route is developed to construct twisted lattices using synthesized monolayers for fundamental studies. Diverse Moiré superlattices are predicted and successfully observed with STM at room temperature. Electrical tuning of the Moiré superlattice is achieved with stacked TMD on graphite.
在两个堆叠的单层之间扭曲可以调节周期性势,形成莫尔电子超晶格,这为改变材料性质提供了额外的自由度。相当多的独特观察结果,包括非常规超导性、耦合自旋-谷态和量子化的层间激子,与电子超晶格有关,但进一步的研究需要可靠的方法来在实空间中研究莫尔。扫描隧道显微镜(STM)是精确探测莫尔超晶格并在原子尺度上关联局部电子结构、应变、缺陷和能带排列之间耦合参数的理想方法。在这里,开发了一种使用合成单层构建扭曲晶格的清洁途径,用于基础研究。通过 STM 在室温下成功地预测和观察到了多种莫尔超晶格。通过在石墨上堆叠 TMD 实现了对莫尔超晶格的电调谐。