Department of Health Science Research, Mayo Clinic, Rochester, Minnesota, United States of America.
Department of Anatomic Pathology, Mayo Clinic, Rochester, Minnesota, United States of America.
PLoS One. 2019 Jul 24;14(7):e0220074. doi: 10.1371/journal.pone.0220074. eCollection 2019.
For many disease conditions, tissue samples are colored with multiple dyes and stains to add contrast and location information for specific proteins to accurately identify and diagnose disease. This presents a computational challenge for digital pathology, as whole-slide images (WSIs) need to be properly overlaid (i.e. registered) to identify co-localized features. Traditional image registration methods sometimes fail due to the high variation of cell density and insufficient texture information in WSIs-particularly at high magnifications. In this paper, we proposed a robust image registration strategy to align re-stained WSIs precisely and efficiently. This method is applied to 30 pairs of immunohistochemical (IHC) stains and their hematoxylin and eosin (H&E) counterparts. Our approach advances the existing methods in three key ways. First, we introduce refinements to existing image registration methods. Second, we present an effective weighting strategy using kernel density estimation to mitigate registration errors. Third, we account for the linear relationship across WSI levels to improve accuracy. Our experiments show significant decreases in registration errors when matching IHC and H&E pairs, enabling subcellular-level analysis on stained and re-stained histological images. We also provide a tool to allow users to develop their own registration benchmarking experiments.
对于许多疾病状况,组织样本会用多种染料和染色剂进行染色,以增加对比度和特定蛋白质的位置信息,从而准确识别和诊断疾病。这对数字病理学提出了计算挑战,因为需要对全切片图像(WSI)进行适当的叠加(即注册),以识别共定位的特征。传统的图像配准方法有时会失败,因为细胞密度变化大,WSI 中的纹理信息不足-特别是在高放大倍数下。在本文中,我们提出了一种强大的图像配准策略,可精确高效地对齐重新染色的 WSI。该方法应用于 30 对免疫组织化学(IHC)染色及其苏木精和伊红(H&E)对照。我们的方法在三个关键方面推进了现有方法。首先,我们对现有图像配准方法进行了改进。其次,我们提出了一种使用核密度估计的有效加权策略,以减轻配准误差。第三,我们考虑了 WSI 级别之间的线性关系,以提高准确性。我们的实验表明,在匹配 IHC 和 H&E 对时,配准误差显著降低,从而可以对染色和重新染色的组织学图像进行亚细胞级别的分析。我们还提供了一个工具,允许用户开发自己的配准基准实验。