Suppr超能文献

区域注册包含主要组织学伪影的全玻片图像堆栈。

Regional registration of whole slide image stacks containing major histological artifacts.

机构信息

Imaging Informatics Division, Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, 07-01, Matrix, 138671, Singapore, Singapore.

Lucence Diagnostics, 217 Henderson Road, 03-08, Henderson Industrial Park, 159555, Singapore, Singapore.

出版信息

BMC Bioinformatics. 2020 Dec 4;21(1):558. doi: 10.1186/s12859-020-03907-6.

Abstract

BACKGROUND

High resolution 2D whole slide imaging provides rich information about the tissue structure. This information can be a lot richer if these 2D images can be stacked into a 3D tissue volume. A 3D analysis, however, requires accurate reconstruction of the tissue volume from the 2D image stack. This task is not trivial due to the distortions such as tissue tearing, folding and missing at each slide. Performing registration for the whole tissue slices may be adversely affected by distorted tissue regions. Consequently, regional registration is found to be more effective. In this paper, we propose a new approach to an accurate and robust registration of regions of interest for whole slide images. We introduce the idea of multi-scale attention for registration.

RESULTS

Using mean similarity index as the metric, the proposed algorithm (mean ± SD [Formula: see text]) followed by a fine registration algorithm ([Formula: see text]) outperformed the state-of-the-art linear whole tissue registration algorithm ([Formula: see text]) and the regional version of this algorithm ([Formula: see text]). The proposed algorithm also outperforms the state-of-the-art nonlinear registration algorithm (original: [Formula: see text], regional: [Formula: see text]) for whole slide images and a recently proposed patch-based registration algorithm (patch size 256: [Formula: see text] , patch size 512: [Formula: see text]) for medical images.

CONCLUSION

Using multi-scale attention mechanism leads to a more robust and accurate solution to the problem of regional registration of whole slide images corrupted in some parts by major histological artifacts in the imaged tissue.

摘要

背景

高分辨率二维全切片成像提供了丰富的组织结构信息。如果这些二维图像可以堆叠成三维组织体积,那么这些信息会更加丰富。然而,三维分析需要从二维图像堆栈中准确重建组织体积。由于每张幻灯片上存在组织撕裂、折叠和缺失等扭曲,因此这项任务并不简单。对整个组织切片进行配准可能会受到扭曲组织区域的不利影响。因此,区域配准被发现更为有效。在本文中,我们提出了一种新的方法,用于对全切片图像的感兴趣区域进行准确和稳健的配准。我们引入了多尺度注意力的概念用于配准。

结果

使用平均相似性指数作为度量标准,所提出的算法(均值±标准差[公式:见文本])优于先进的线性全组织配准算法[公式:见文本]和该算法的区域版本[公式:见文本]。所提出的算法也优于先进的非线性配准算法(原始:[公式:见文本],区域:[公式:见文本]),用于全切片图像,以及最近提出的基于补丁的配准算法(补丁大小 256:[公式:见文本],补丁大小 512:[公式:见文本]),用于医学图像。

结论

使用多尺度注意力机制,可以更稳健和准确地解决部分受成像组织中大组织学伪影影响的全切片图像区域配准问题。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/47b4/7718714/3d1e0a367419/12859_2020_3907_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验