Suppr超能文献

健康老龄化:运用精准手段降低成本并提高健康质量。

Aging Well: Using Precision to Drive Down Costs and Increase Health Quality.

作者信息

Au Rhoda, Ritchie Marina, Hardy Spencer, Ang Ting Fang Alvin, Lin Honghuang

机构信息

Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA.

Framingham Heart Study, National Heart, Lung, and Blood Institute, Boston, MA 01702, USA.

出版信息

Adv Geriatr Med Res. 2019;1. doi: 10.20900/agmr20190003. Epub 2019 Jun 5.

Abstract

Efforts to provide patients with individualized treatments have led to tremendous breakthroughs in healthcare. However, a precision medicine approach alone will not offset the rapid increase in prevalence and burden of chronic non-communicable illnesses that is continuing to pervade the world's aging population. With rapid advances in technology, it is now possible to collect digital metrics to assess, monitor and detect chronic disease indicators, much earlier in the disease course, potentially redefining what was previously considered asymptomatic to pre-symptomatic. Data science and artificial intelligence can drive the discovery of digital biomarkers before the emergence of overt clinical symptoms, thereby transforming the current healthcare approach from one centered on precision medicine to a more comprehensive focus on precision health, and by doing so enable the possibility of preventing disease altogether. Presented herein are the challenges to the current healthcare model and the proposition of first steps for reversing the prevailing intractable trend of rising healthcare costs and poorer health quality.

摘要

为患者提供个性化治疗的努力已在医疗保健领域带来了巨大突破。然而,仅靠精准医疗方法并不能抵消慢性非传染性疾病患病率和负担的快速上升,这种上升趋势仍在全球老龄化人口中蔓延。随着技术的飞速发展,现在有可能收集数字指标,以便在疾病进程的更早阶段评估、监测和检测慢性病指标,这有可能重新定义以前被认为是无症状的状态为症状前状态。数据科学和人工智能可以在明显临床症状出现之前推动数字生物标志物的发现,从而将当前以精准医疗为中心的医疗方法转变为更全面地关注精准健康,并借此实现完全预防疾病的可能性。本文介绍了当前医疗保健模式面临的挑战,以及扭转医疗成本不断上升和健康质量下降这一普遍棘手趋势的初步措施建议。

相似文献

3
4
The future of Cochrane Neonatal.考克兰新生儿协作网的未来。
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.
6
[Precision Health and Nursing Care in the Digital Age].[数字时代的精准健康与护理]
Hu Li Za Zhi. 2022 Apr;69(2):4-6. doi: 10.6224/JN.202204_69(2).01.
8
10
Digital Twins for Multiple Sclerosis.数字孪生在多发性硬化症中的应用。
Front Immunol. 2021 May 3;12:669811. doi: 10.3389/fimmu.2021.669811. eCollection 2021.

引用本文的文献

2
Precision public health in the era of genomics and big data.基因组学和大数据时代的精准公共卫生
Nat Med. 2024 Jul;30(7):1865-1873. doi: 10.1038/s41591-024-03098-0. Epub 2024 Jul 11.
6
Components, prospects and challenges of personalized prevention.个性化预防的组成部分、前景和挑战。
Front Public Health. 2023 Feb 16;11:1075076. doi: 10.3389/fpubh.2023.1075076. eCollection 2023.
7
DementiaBank: Theoretical Rationale, Protocol, and Illustrative Analyses.痴呆症数据库:理论基础、方案及实例分析。
Am J Speech Lang Pathol. 2023 Mar 9;32(2):426-438. doi: 10.1044/2022_AJSLP-22-00281. Epub 2023 Feb 15.

本文引用的文献

7
Modes of De-identification.去识别化模式。
AMIA Annu Symp Proc. 2018 Apr 16;2017:1044-1050. eCollection 2017.
10
Cancer statistics, 2018.癌症统计数据,2018 年。
CA Cancer J Clin. 2018 Jan;68(1):7-30. doi: 10.3322/caac.21442. Epub 2018 Jan 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验