Suppr超能文献

等长强直收缩中能量平衡的时间进程。

The time-course of energy balance in an isometric tetanus.

作者信息

Homsher E, Kean C J, Wallner A, Garibian-Sarian V

出版信息

J Gen Physiol. 1979 May;73(5):553-67. doi: 10.1085/jgp.73.5.553.

Abstract

Unpoisoned sartorius muscles of Rana temporaria were stimulated tetanically in isometric contractions lasting up to 20 s at 0 degrees C. The observed enthalpy (heat + work) production and the chemical changes in these contractions were measured, and a comparison was made between the observed enthalpy and the enthalpy that could be explained by the chemical changes. Like earlier workers, we found that the only net known reaction of energetic significance that occurred was dephosphorylation of n-phosphoryl creatine (PC), and we found a significant evolution of unexplained enthalpy (UE), a portion of the observed enthalpy which could not be explained by the extent of PC dephosphorylation. We measured the total quantity and the rate of production of the UE, and we found that its rate of evolution, which was most rapid during the first 750 ms of contraction, fell progressively to zero by the 8th s of contraction: i.e., after 8 s of contraction, all the observed enthalpy is adequately explained by PC dephosphorylation. The time-course of evolution of the UE was slower than that of the labile enthalpy (a component of the enthalpy evolved in isometric contraction whose rate of production declines exponentially at approximately 1 s-1). We conclude that, although the magnitudes of these enthalpy quantities may be similar, they are not derived from the same chemical reaction in muscle.

摘要

在0摄氏度下,对林蛙未中毒的缝匠肌进行强直刺激,使其进行等长收缩,持续时间长达20秒。测量了这些收缩过程中观察到的焓(热+功)产生以及化学变化,并对观察到的焓与化学变化所能解释的焓进行了比较。与早期的研究者一样,我们发现唯一具有能量意义的已知净反应是n-磷酸肌酸(PC)的去磷酸化,并且我们发现了无法解释的焓(UE)的显著释放,即观察到的焓的一部分无法用PC去磷酸化的程度来解释。我们测量了UE的总量和产生速率,发现其释放速率在收缩的前750毫秒内最快,到收缩第8秒时逐渐降至零:也就是说,收缩8秒后,所有观察到的焓都可以通过PC去磷酸化得到充分解释。UE的释放时间进程比不稳定焓(等长收缩中释放的焓的一个组成部分,其产生速率以约1 s-1的指数下降)的时间进程要慢。我们得出结论,尽管这些焓量的大小可能相似,但它们并非源自肌肉中的同一化学反应。

相似文献

1
The time-course of energy balance in an isometric tetanus.
J Gen Physiol. 1979 May;73(5):553-67. doi: 10.1085/jgp.73.5.553.
2
A comparison of the energy balance in two successive isometric tetani of frog muscle.
J Physiol. 1977 Sep;270(2):455-71. doi: 10.1113/jphysiol.1977.sp011962.
3
Energy balance in frog sartorius muscle during an isometric tetanus at 20 degrees C.
J Physiol. 1973 Aug;232(3):467-83. doi: 10.1113/jphysiol.1973.sp010281.
4
Repriming and reversal of the isometric unexplained enthalpy in frog skeletal muscle.
J Physiol. 1987 Dec;393:157-70. doi: 10.1113/jphysiol.1987.sp016817.
7
The effect of the performance of work on total energy output and metabolism during muscular contraction.
J Physiol. 1974 May;238(3):455-72. doi: 10.1113/jphysiol.1974.sp010537.

引用本文的文献

1
A century of exercise physiology: key concepts in muscle energetics.
Eur J Appl Physiol. 2023 Jan;123(1):25-42. doi: 10.1007/s00421-022-05070-7. Epub 2022 Oct 22.
2
The legacy of A. V. Hill's Nobel Prize winning work on muscle energetics.
J Physiol. 2022 Apr;600(7):1555-1578. doi: 10.1113/JP281556. Epub 2022 Feb 22.
3
Energetics of muscle contraction: further trials.
J Physiol Sci. 2017 Jan;67(1):19-43. doi: 10.1007/s12576-016-0470-3. Epub 2016 Jul 13.
4
Large-scale models reveal the two-component mechanics of striated muscle.
Int J Mol Sci. 2008 Dec;9(12):2658-2723. doi: 10.3390/ijms9122658. Epub 2008 Dec 18.
5
Actomyosin energy turnover declines while force remains constant during isometric muscle contraction.
J Physiol. 2004 Feb 15;555(Pt 1):27-43. doi: 10.1113/jphysiol.2003.040089. Epub 2003 Oct 17.
7
Estimation of cross-bridge stiffness from maximum thermodynamic efficiency.
J Muscle Res Cell Motil. 1998 Nov;19(8):855-64. doi: 10.1023/a:1005409708838.
8
Chemical energetics of slow- and fast-twitch muscles of the mouse.
J Gen Physiol. 1982 Jan;79(1):147-66. doi: 10.1085/jgp.79.1.147.
10
Effect of muscle length on energy balance in frog skeletal muscle.
J Physiol. 1981 Jul;316:453-68. doi: 10.1113/jphysiol.1981.sp013800.

本文引用的文献

1
An examination of absolute values in myothermic measurements.
J Physiol. 1962 Jul;162(2):311-33. doi: 10.1113/jphysiol.1962.sp006935.
2
The break-down of adenosine triphosphate in the contraction cycle of the frog sartorius muscle.
J Physiol. 1967 Nov;193(2):343-57. doi: 10.1113/jphysiol.1967.sp008361.
3
Heat production and chemical change in tortoise muscle.
J Physiol. 1970 Feb;206(2):457-69. doi: 10.1113/jphysiol.1970.sp009024.
4
The intracellular site of calcium activaton of contraction in frog skeletal muscle.
J Gen Physiol. 1970 Jan;55(1):77-88. doi: 10.1085/jgp.55.1.77.
5
Chemical change and energy output during muscular contraction.
J Physiol. 1971 Oct;218(1):163-93. doi: 10.1113/jphysiol.1971.sp009609.
6
Intracellular calcium movements of frog skeletal muscle during recovery from tetanus.
J Gen Physiol. 1968 Jan;51(1):65-83. doi: 10.1085/jgp.51.1.65.
7
The effect of the performance of work on total energy output and metabolism during muscular contraction.
J Physiol. 1974 May;238(3):455-72. doi: 10.1113/jphysiol.1974.sp010537.
8
Energetics of relaxation in frog muscle.
J Physiol. 1974 Apr;238(2):437-46. doi: 10.1113/jphysiol.1974.sp010535.
9
Activation heat, activation metabolism and tension-related heat in frog semitendinosus muscles.
J Physiol. 1972 Feb;220(3):601-25. doi: 10.1113/jphysiol.1972.sp009725.
10
Automated fluorometric analysis of biological compounds.
Anal Biochem. 1972 Sep;49(1):73-87. doi: 10.1016/0003-2697(72)90243-6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验