Suppr超能文献

通过识别图形特征改进物联网预测。

Improving IoT Predictions through the Identification of Graphical Features.

作者信息

Akter Syeda, Holder Lawrence

机构信息

School of Electrical Engineering and Computer Science, Washington State University, Pullman, WA 99163, USA.

出版信息

Sensors (Basel). 2019 Jul 24;19(15):3250. doi: 10.3390/s19153250.

Abstract

IoT sensor networks have an inherent graph structure that can be used to extract graphical features for improving performance in a variety of prediction tasks. We propose a framework that represents IoT sensor network data as a graph, extracts graphical features, and applies feature selection methods to identify the most useful features that are to be used by a classifier for prediction tasks. We show that a set of generic graph-based features can improve performance of sensor network predictions without the need for application-specific and task-specific feature engineering. We apply this approach to three different prediction tasks: activity recognition from motion sensors in a smart home, demographic prediction from GPS sensor data in a smart phone, and activity recognition from GPS sensor data in a smart phone. Our approach produced comparable results with most of the state-of-the-art methods, while maintaining the additional advantage of general applicability to IoT sensor networks without using sophisticated and application-specific feature generation techniques or background knowledge. We further investigate the impact of using edge-transition times, categorical features, different sensor window sizes, and normalization in the smart home domain. We also consider deep learning approaches, including the Graph Convolutional Network (GCN), for the elimination of feature engineering in the smart home domain, but our approach provided better performance in most cases. We conclude that the graphical feature-based framework that is based on IoT sensor categorization, nodes and edges as features, and feature selection techniques provides superior results when compared to the non-graph-based features.

摘要

物联网传感器网络具有固有的图结构,可用于提取图形特征,以提高各种预测任务的性能。我们提出了一个框架,将物联网传感器网络数据表示为图,提取图形特征,并应用特征选择方法来识别分类器在预测任务中使用的最有用特征。我们表明,一组基于通用图的特征可以提高传感器网络预测的性能,而无需进行特定应用和特定任务的特征工程。我们将此方法应用于三个不同的预测任务:智能家居中运动传感器的活动识别、智能手机中GPS传感器数据的人口统计预测以及智能手机中GPS传感器数据的活动识别。我们的方法与大多数最先进的方法产生了可比的结果,同时保持了对物联网传感器网络普遍适用的额外优势,而无需使用复杂的特定应用特征生成技术或背景知识。我们进一步研究了在智能家居领域使用边缘转换时间、分类特征、不同传感器窗口大小和归一化的影响。我们还考虑了深度学习方法,包括图卷积网络(GCN),用于消除智能家居领域的特征工程,但我们的方法在大多数情况下提供了更好的性能。我们得出结论,与基于非图形的特征相比,基于物联网传感器分类、以节点和边缘为特征以及特征选择技术的基于图形特征的框架提供了更好的结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a6a/6696358/ce15976443c3/sensors-19-03250-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验